Ubuntu 20.04 实时查看GPU使用情况

部署运行你感兴趣的模型镜像

使用两种方法,实时查看 GPU 使用情况;彻底杀死制定进程

1. nvidia-smi

使用终端命令 nvidia-smi 查看显卡信息

如果你想实时检测显卡使用情况,添加 watch -n 即可

watch -n 4 nvidia-smi

其中,4 是指 4 秒刷新一次终端,可以根据自己的需求设置

2.gpustat

安装过程很简单,直接 pip 即可(本人是这样),使用 gpustat --json 以 json 形式呈现 gpu 信息
使用 gpustat -i 命令可以查看用户使用 gpu 情况
使用以下命令,可以查看更具体的信息,比如用户 xxx 的 xxx 进程占用情况

watch --color -n 1 gpustat -cpu

3.总结

nvidia-smi 方法显示的内容更全面,包括 pid
gpustat 方法可以定位到某个用户的某个任务占用 gpu 情况

4.杀进程

我们经常遇到卡死进程然后用 ctrl + z 强制关闭程序的情况,这样关掉的进程不会被释放,还占用内存空间,可以使用以下命令彻底杀死进程
A.查看强关的进程信息

jobs -l

B.彻底杀死进程

kill -9 pid

C.批量杀进程

pkill xxx

其中 xxx 是关键字

您可能感兴趣的与本文相关的镜像

Yolo-v8.3

Yolo-v8.3

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

### SIFT GPU 的安装指南 要在 Ubuntu 20.04 上成功安装并配置 SIFT GPU,可以按照以下方法操作: #### 准备工作 确保系统已更新至最新状态,并安装必要的依赖项。运行以下命令来完成环境准备: ```bash sudo apt update && sudo apt upgrade -y sudo apt install build-essential cmake git libgtk2.0-dev pkg-config \ libavcodec-dev libavformat-dev libswscale-dev python3-dev python3-numpy \ libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libdc1394-22-dev \ nvidia-cuda-toolkit -y ``` 此部分涉及 NVIDIA CUDA 工具包的安装[^1]。 --- #### 下载 SIFT GPU 源码 访问官方 GitHub 或其他可信资源下载 SIFT GPU 的源代码。以下是通过 Git 获取的方式: ```bash git clone https://github.com/domisum/SiftGPU.git cd SiftGPU/ ``` 如果无法使用 `git` 命令,则可以通过浏览器手动下载 ZIP 文件并解压到目标目录。 --- #### 编译 SIFT GPU 进入项目根目录后,执行编译脚本或手动构建程序。通常情况下,SIFT GPU 提供了一个简单的 Makefile 来简化这一过程: ```bash make ``` 这一步会生成可执行文件以及所需的库文件。如果有特定需求(例如支持 OpenCV 集成),可能需要调整 CMakeLists.txt 或 makefile 中的相关选项。 注意:某些版本可能会提示缺少头文件或其他错误消息,请根据具体报错信息补充缺失组件[^2]。 --- #### 测试安装结果 为了验证 SIFT GPU 是否正常工作,在终端中切换到测试样例所在的子目录(通常是 examples/ 或 test/)。尝试运行预定义的应用实例查看效果如何: ```bash ./sift_test image.jpg output.sift ``` 这里假设存在名为 `image.jpg` 的输入图片作为演示素材;实际路径应替换为你本地存储的实际位置。 --- #### 整合进现有项目 (Optional) 如果你希望将 SIFT GPU 功能嵌入自己的应用程序里,则需链接其静态或者动态共享对象(.so)形式的产物。下面给出一段伪代码展示基本调用方式: ```cpp #include "siftgpu.h" int main(){ CSiftGPU sift; if(!sift.Init(1, true)){ printf("Failed to initialize SIFT-GPU\n"); return -1; } const char* filename = "./input_image.png"; unsigned char *data; int w,h,ch; LoadImage(filename,&w,&h,&ch,(void**)&data); // 自定义加载函数 float fTime=0; bool bSuccess=sift.RunSIFT(w,h,data,SIFT_GPU_FLOAT,fTime); ... } ``` 以上片段仅作示意用途,请参照官方文档进一步完善细节处理逻辑[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值