【LeetCode每日一题:891. 子序列宽度之和~~~排序+数学推导】

题目描述

一个序列的 宽度 定义为该序列中最大元素和最小元素的差值。

给你一个整数数组 nums ,返回 nums 的所有非空 子序列 的 宽度之和 。由于答案可能非常大,请返回对 109 + 7 取余 后的结果。

子序列 定义为从一个数组里删除一些(或者不删除)元素,但不改变剩下元素的顺序得到的数组。例如,[3,6,2,7] 就是数组 [0,3,1,6,2,2,7] 的一个子序列。

示例 1:

输入:nums = [2,1,3]
输出:6
解释:子序列为 [1], [2], [3], [2,1], [2,3], [1,3], [2,1,3] 。
相应的宽度是 0, 0, 0, 1, 1, 2, 2 。
宽度之和是 6 。
示例 2:

输入:nums = [2]
输出:0

提示:

1 <= nums.length <= 105
1 <= nums[i] <= 105

求解思路

  1. 先对我们的数组排序,因为数组中的元素的顺序对我们最终的结果是没有影响的。

  2. 然后对于每个下标的元素,先将它作为子序列最大值共有2^i个,同理,将它作为子序列的最小值共有2^nums.length-i-1个。

  3. 那么,针对于nums[i]来说,它的宽度总和就是:

    (2i-2(nums.length-i-1)) * nums[i]
    我们遍历所有nums数组中的元素,逐一计算每个元素的宽度总和,那么最终结果就是本题的答案。

实现代码

class Solution {
    public int sumSubseqWidths(int[] nums) {
        Arrays.sort(nums);
        int mod = (int)1e9 + 7, n = nums.length;
        long result = 0;
        long[] pow = new long[n];
        pow[0] = 1;
        for (int i = 1; i < n; i++) 
            pow[i] = (pow[i - 1] << 1) % mod;
        for (int i = 0; i < n; i++)
            result = (result + (pow[i] - pow[n-i-1]) * nums[i] % mod) % mod;          
        return (int)result;
    }
}

运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硕风和炜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值