题目描述
一个序列的 宽度 定义为该序列中最大元素和最小元素的差值。
给你一个整数数组 nums ,返回 nums 的所有非空 子序列 的 宽度之和 。由于答案可能非常大,请返回对 109 + 7 取余 后的结果。
子序列 定义为从一个数组里删除一些(或者不删除)元素,但不改变剩下元素的顺序得到的数组。例如,[3,6,2,7] 就是数组 [0,3,1,6,2,2,7] 的一个子序列。
示例 1:
输入:nums = [2,1,3]
输出:6
解释:子序列为 [1], [2], [3], [2,1], [2,3], [1,3], [2,1,3] 。
相应的宽度是 0, 0, 0, 1, 1, 2, 2 。
宽度之和是 6 。
示例 2:
输入:nums = [2]
输出:0
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 105
求解思路
-
先对我们的数组排序,因为数组中的元素的顺序对我们最终的结果是没有影响的。
-
然后对于每个下标的元素,先将它作为子序列最大值共有2^i个,同理,将它作为子序列的最小值共有2^nums.length-i-1个。
-
那么,针对于nums[i]来说,它的宽度总和就是:
(2i-2(nums.length-i-1)) * nums[i]
我们遍历所有nums数组中的元素,逐一计算每个元素的宽度总和,那么最终结果就是本题的答案。
实现代码
class Solution {
public int sumSubseqWidths(int[] nums) {
Arrays.sort(nums);
int mod = (int)1e9 + 7, n = nums.length;
long result = 0;
long[] pow = new long[n];
pow[0] = 1;
for (int i = 1; i < n; i++)
pow[i] = (pow[i - 1] << 1) % mod;
for (int i = 0; i < n; i++)
result = (result + (pow[i] - pow[n-i-1]) * nums[i] % mod) % mod;
return (int)result;
}
}