Leetcode 891

给一个数组,求这个数组的所有子序列(可以不连续)的最大值和最小值的差的和

 

 

如果考虑所有的子序列显然是N^2的数量级,还要求出来最大值和最小值,那么复杂度高达O(N^3)

其实我们可以单独考虑每个值对答案的贡献

当A[i]作为最大值的值时候对答案的贡献为A[i]

当A[i]作为最小值的值时候对答案的贡献为-A[i]

 

因此我们可以对数组先排个序(因为是子序列,数组元素的位置修改并不影响)

考虑A[i]什么时候为最大值的时候因为比A[i]小的数有i个,因此有2^i种情况,同理比A[i]大的数有length-1-i个

因此A[i]对答案的贡献为2^i*A[i]-2^(length-i-1)*A[i]

 

    public int sumSubseqWidths(int[] A) {
        int mod = 10_0000_0007;
        Arrays.sort(A);
        long res = 0;
        int[] pow = new int[A.length];
        pow[0] = 1;
        for (int i = 1; i < A.length; i++) pow[i] = pow[i - 1] * 2 % mod;
        for (int i = 0; i < A.length; i++) {
            res += 1L * pow[i] * A[i];
            res -= 1L * pow[A.length - 1 - i] * A[i];
            res %= mod;
        }
        return (int) res;
    }

 

预处理 第一遍dfs求出树每个结点的深度deep[x],其为根的子树大小size[x] 以及祖先的信息fa[x][i]表示x往上距离为2^i的祖先 第二遍dfs ž根节点为起点,向下拓展构建重链 选择最大的一个子树的根继承当前重链 其余节点,都以该节点为起点向下重新拉一条重链 ž给每个结点分配一个位置编号,每条重链就相当于一段区间,用数据结构去维护。 把所有的重链首尾相接,放到同一个数据结构上,然后维护这一个整体即可 修改操作 ž1、单独修改一个点的权值 根据其编号直接在数据结构中修改就行了。 2、修改点u和点v的路径上的权值 (1)若u和v在同一条重链上 直接用数据结构修改pos[u]至pos[v]间的值。 (2)若u和v不在同一条重链上 一边进行修改,一边将u和v往同一条重链上靠,然后就变成了情况(1)。 伪代码 CHANGE (x, y ,d) while top[x]≠top[y] do if dep[top[x]]<dep[top[y]] then SWAP(x,y), SWAP (gx,gy) CHANGE-IT(tid[top[x]],tid[x],d) fa[x]→x if dep[x]>dep[y] then SWAP (x,y) CHANGE-IT(tid[x],tid[y],d) //CHANGE-IT(l,r,d)为数据结构的修改操作:将区间[l,r]上的所有权值改为d 查询操作 ž查询操作的分析过程同修改操作 伪代码 QUERY (x, y) while top[x]≠top[y] do if dep[top[x]]<dep[top[y]] then SWAP (x,y), SWAP (gx,gy) QUERY-IT(tid[top[x]],tid[x]) fa[x]→x if dep[x]>dep[y] then SWAP (x,y) QUERY-IT(tid[x],tid[y]) //QUERY-IT(l,r)为数据结构的查询操作, 题目不同,选用不同的数据结构来维护值,通常有线段树和splay [2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值