题目描述
一个数组A中存有N(>0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(≥0)个位置,即将A中的数据由(A0A1⋯AN−1)变换为(AN−M⋯AN−1A0A1⋯AN−M−1)(最后M个数循环移至最前面的M个位置)。如果需要考虑程序移动数据的次数尽量少,要如何设计移动的方法?
输入格式:
每个输入包含一个测试用例,第1行输入N(1≤N≤100)和M(≥0);第2行输入N个整数,之间用空格分隔。
输出格式:
在一行中输出循环右移M位以后的整数序列,之间用空格分隔,序列结尾不能有多余空格。
输入样例:
6 2
1 2 3 4 5 6
输出样例:
5 6 1 2 3 4
解题思路
本题如果只是为了ac其实并不需要真正对数组进行修改,只需要根据循环位数控制输出顺序即可。但是本着学习的态度,这里记录一下真正按照题目意思来的修改方式:
参考了胡凡《算法笔记上级训练指南》
需要注意的地方
- 数组元素从0号位开始;
- 题目没说M<N,所以需要让M对N取模,从而保证M<N。(没有此步测试用例过不去);
- 对于M=0的情况,可以直接输出原始数组,不用操作。(没有此处判断,测试用例会超时);
- 对每个元素进行处理的过程中,寻找当前位置的前一个位置时,运算不能写成
j = (j - M) % N;//j表示前一个位置
需要考虑到j = 0
的情况,所以应当写成
j = (j - M + N) % N;//j表示前一个位置
;
代码
贴一下我自己的代码,跟胡凡那本书上的不太一样,但是思路是一样的。
#include <cstdio>
#include <cmath>
int gcd(int a, int b)
{//最大公约数
if (b == 0)
return a;
else
return gcd(b, a%b);
}
int main()
{ //0号位为起始位
//从N-M号位开始枚举 直到N-M+d-1位结束,d是M和N的最小公约数
int N, M;
int a[110];
scanf("%d%d", &N, &M);
M = M % N;
int d = gcd(N, M);
for (int i = 0; i < N; ++i)
{
scanf("%d", &a[i]);
}
if (M != 0) {
int start = N - M, end = N - M + d - 1;
for (int i = start; i <= end; ++i)
{
int temp = a[i];
int j = (i - M+N) % N;//j表示前一个位置
while (j != i)
{
a[(j + M) % N] = a[j];
j = (j - M+N) % N;
//if (j < 0)
//j += N;
}
a[(j + M) % N] = temp;
}
}
for (int i = 0; i < N; ++i)
{
if (i < N - 1)
printf("%d ", a[i]);
else
printf("%d", a[i]);
}
return 0;
}