PAT_b1008:数组元素循环右移问题

题目描述

一个数组A中存有N(>0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(≥0)个位置,即将A中的数据由(A​0​​A​1​​⋯A​N−1​​)变换为(A​N−M​​⋯A​N−1​​A​0​​A​1​​⋯A​N−M−1​​)(最后M个数循环移至最前面的M个位置)。如果需要考虑程序移动数据的次数尽量少,要如何设计移动的方法?

输入格式:

每个输入包含一个测试用例,第1行输入N(1≤N≤100)和M(≥0);第2行输入N个整数,之间用空格分隔。

输出格式:

在一行中输出循环右移M位以后的整数序列,之间用空格分隔,序列结尾不能有多余空格。

输入样例:

6 2
1 2 3 4 5 6

输出样例:

5 6 1 2 3 4

解题思路

本题如果只是为了ac其实并不需要真正对数组进行修改,只需要根据循环位数控制输出顺序即可。但是本着学习的态度,这里记录一下真正按照题目意思来的修改方式:
参考了胡凡《算法笔记上级训练指南》

算法描述

需要注意的地方

  1. 数组元素从0号位开始;
  2. 题目没说M<N,所以需要让M对N取模,从而保证M<N。(没有此步测试用例过不去);
  3. 对于M=0的情况,可以直接输出原始数组,不用操作。(没有此处判断,测试用例会超时);
  4. 对每个元素进行处理的过程中,寻找当前位置的前一个位置时,运算不能写成
    j = (j - M) % N;//j表示前一个位置
    需要考虑到j = 0的情况,所以应当写成
    j = (j - M + N) % N;//j表示前一个位置

代码

贴一下我自己的代码,跟胡凡那本书上的不太一样,但是思路是一样的。

#include  <cstdio>
#include <cmath>

int gcd(int a, int b)
{//最大公约数
	if (b == 0)
		return a;
	else
		return gcd(b, a%b);
}

int main()
{	//0号位为起始位
	//从N-M号位开始枚举	 直到N-M+d-1位结束,d是M和N的最小公约数

	int N, M;
	int a[110];
	scanf("%d%d", &N, &M);
	M = M % N;
	int d = gcd(N, M);
	for (int i = 0; i < N; ++i)
	{
		scanf("%d", &a[i]);
	}
	if (M != 0) {
		int start = N - M, end = N - M + d - 1;
		for (int i = start; i <= end; ++i)
		{
			int temp = a[i];
			int j = (i - M+N) % N;//j表示前一个位置
			while (j != i)
			{
				a[(j + M) % N] = a[j];
				j = (j - M+N) % N;
				//if (j < 0)
					//j += N;
			}
			a[(j + M) % N] = temp;
		}
	}
	for (int i = 0; i < N; ++i)
	{
		if (i < N - 1)
			printf("%d ", a[i]);
		else
			printf("%d", a[i]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值