【Motion Forecasting】【摘要阅读】Dynamic Spatio-temporal GNN for Surrounding-aware Trajectory Prediction

Dynamic Spatio-temporal Graph Neural Network for Surrounding-aware Trajectory Prediction of Autonomous Vehicles

这项工作发布于2024年的IEEE TRANSACTIONS ON INTELLIGENT VEHICLES。

Abstract

轨迹预测对于理解和估计动态系统的运动而言是非常重要的,包括机器人和自动驾驶汽车。为了能够使自动驾驶汽车安全地行驶,一辆自动驾驶汽车应该能够对自身的未来运动进行规划,并对其周围车辆的未来运动进行预测。为了提高轨迹预测的精度,自动驾驶汽车应该能够理解周围其它交通参与者之间的相互交互。

在这项研究中,作者提出了一种动态时空图卷积神经网络(dynamic spatio-temporal graph convolutional network),来对交通场景中车辆的未来轨迹分布进行预测。本文方法在交通场景所对应的有向图表示上使用GCN操作来捕捉场景中每一台车辆的空间依赖性。为了能够准确地重现出车辆之间的交互,本文方法提出了一种新颖的带权邻接矩阵,它是根据车辆在空间中的相对位置(角度编码,angular encoding)以及相对距离来进行设置的。

此外,本文方法还使用时序卷积网络(Temporal Convolution Network,TCN)来捕捉代理历史运动轨迹序列的时序依赖性,并利用代理的历史轨迹来对其未来轨迹进行解码。

作者在HighD数据集上对模型的性能进行了验证。实验结果表明,本文提出的模型与现有的SOTA相比,精度获得了很大的提升。同时,作者使用NGSIM(US-101)数据集验证了本文模型的迁移学习能力。实验结果同样表明本文所提出的模型在迁移学习任务上的性能也非常好,与目前的SOTA方法相当。

Contributions

  • 本文提出了一种新颖的方法,将车辆在交通场景当中的策略位置(strategic positions)与动态STGCN模型相结合。与仅仅依赖于基于相对距离的邻接矩阵不同,本文方法同时对车辆的相对位置和相对距离进行考虑,从而更准确地捕捉车辆之间的空间关系;
  • 本文方法在有向图结构上使用动态STGCN模型,来对交通场景中所有的车辆进行同时的轨迹预测。通过利用有向图的拓扑,本文方法可以捕捉到车辆之间内在的关联,使得模型可以在考虑整个交通场景动态的情况下对轨迹进行全面的预测。

Positional Angular Encoding-based Edges

这部分对应于原文的Ⅳ-A,即本文根据车辆之间相对位置和相对距离所提出的带权邻接矩阵。

基于欧氏距离的邻接矩阵仅仅提供了车辆之前相对距离的信息,其中不包含目标车辆与邻域车辆之间相对角度位置的关系。因此,本文提出了一种邻域车辆相对于目标车辆的角度位置编码方法,来捕捉邻域车辆与目标车辆之间的相对角度位置。

使用cosine函数来分别邻域车辆与目标车辆之间的相对位置,cosine函数值可以代表邻域车辆是在目标车辆之前还是之后。

考虑一个交通场景,左上角代表全局坐标系统的原点,如下图所示。
在这里插入图片描述
x轴代表驾驶车辆的正向行驶方向,它向右延长,而y轴代表车辆的横向行驶方向,它向下延长。x轴始终是平行的,而y轴值的变化可以反映道路的弯曲程度,同时可以反应车辆轨迹的变化。

目标车辆与其它车辆的策略位置可以使用车辆的坐标来进行估计。在上图中,蓝色车辆的位置在棕色车辆行驶方向的左侧,表明蓝色车辆在棕色车辆的视角下处于正策略位置(positive strategic position)。因此,两辆车 i i i j j j之间的角度可以定义为:
在这里插入图片描述
其中 p i t = ( x i t , y i t ) , p j t = ( x j t , y j t ) p^t_i = (x^t_i, y^t_i), p^t_j = (x^t_j, y^t_j) pit=(xit,yit),pjt=(xjt,yjt)是车辆在时刻 t t t于全局坐标系当中的位置。在目标车辆视角下其它车辆相对于目标车辆的角度位置带权邻接矩阵可以定义为:
在这里插入图片描述
基于角度位置的带权邻接矩阵当中的值的取值范围是 [ − 1 , + 1 ] [-1, +1] [1,+1],正的值表示车辆处于目标车辆行驶方向的前方,而负的值表示车辆位于目标车辆行驶方向的后方。由于邻接矩阵当中的值都是非负的,因此需要对上述带权邻接矩阵进行标准化,将其中的值与 0.5 0.5 0.5相乘,再加上 0.5 0.5 0.5。通过上述方式,零值表示邻域车辆位于目标车辆行驶方向的后方。

将基于欧氏距离的邻接矩阵与基于角度的带权邻接矩阵相加,即得到了本文方法最终要使用的带权邻接矩阵:
在这里插入图片描述

Conclusion

本文方法使用动态STGCN来同时对交通场景中所有车辆的未来轨迹进行预测。本文方法使用GCN来对车辆的空间依赖性进行捕捉,并用TCN来提取轨迹序列的时间依赖性,使得模型可以准确地对车辆的未来运动进行预测。

基于GCN操作,本文提出了一种新颖的构件车辆之间带权邻接矩阵的方式,通过使用目标车辆与邻域车辆之间的相对距离和相对角度位置来完成。该方法的目的是为模型提供有关空间位置的先验知识,并捕捉周围车辆之于目标车辆未来运动的影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值