Trajectory Clustering(DBSCAN算法进行轨迹聚类)

本文介绍了如何使用DBSCAN算法对轨迹数据进行聚类。首先,通过计算轨迹点的MDLpar和MDLnopar来提取特征点,接着详细阐述了DBSCAN聚类的步骤,并提供了部分代码实现。虽然文章未涵盖所有聚类后的处理,但为轨迹处理提供了基础方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据及代码

1. 步骤

  • 提取轨迹特征点
  • 使用DBSCAN算法聚类

2. 提取轨迹特征点

2.1 算法思想

一段轨迹,比如 {p1,p2,p3,p4,p5},遍历这个轨迹的所有点,计算每一个点的MDLpar和MDLnopar,如果MDLpar > MDLnopar,那么这个点就是特征点(MDL就是最小描述原则,有兴趣可以自行搜索)

算法伪代码
算法伪代码

2.2 计算MDLpar和MDLnopar

轨迹 {pc1,pc2,pc3,pc4,ppari}
L(H)和L(D|H)
比如
L(H)和L(D|H)例子
MDLpar = L(H) + L(D|H)
MDLnopar = L(H)(轨迹总长度,上图为len(p1,p2)+len(p2,p3)+len(p3,p4))

两条线段Lj,Li(短的为Lj,长的为Li)
在这里插入图片描述

2.3 代码

2.3.1 一些计算距离的函数
def calc_distance(p1, p2):
    """计算p1,p2的直线距离"""
    return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)


def calc_straight_line(p1, p2):
    """计算p1 p2的直线方程"""
    try:
        k = (p1[1] - p2[1]) / (p1[0] - p2[0])
    except ZeroDivisionError:
        k = 0
    b = p1[1] - k * p1[0]
    return k, b


def calc_projection(p1, p2, p3):
    """计算 p1 在 线段(p2,p3)上的投影点"""
    k, b = calc_straight_line(p2, p3)
    x = (k * (p1[1] - b) + p1[0]) / (k ** 2 + 1)
    y = k * x + b
    return [x, y]


def calc_point_line_distance(p1, p2, p3):
    """计算点 p1 到 线段(p2,p3)的距离"""
    a = p3[1] - p2[1]
    b = p2[1] - p3[1]
    c = p3[0] * p2[1] - p2[0] * p2[1]
    try:
        distance = (math.fabs(a * p1[0] + b * p1[1] + c)) / (math.pow(a * a + b * b, 0.5))
    except ZeroDivisionError:
        distance = 0
    return distance


def calc_angel_sin(p1,
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值