Description:
阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机。打字机上只有28个按键,分别印有 26个小写英文字母和’B’、’P’两个字母。 经阿狸研究发现,这个打字机是这样工作的:
输入小写字母,打字机的一个凹槽中会加入这个字母(按 P 前凹槽中至少有一个字母)。
按一下印有'B'的按键,打字机凹槽中最后一个字母会消失。
按一下印有'P'的按键,打字机会在纸上打印出凹槽中现有的所有字母并换行,但凹槽中的字母不会消失(保证凹槽中至少有一个字母) 。
例如,阿狸输入 aPaPBbP,纸上被打印的字符如下:
a
aa
ab
我们把纸上打印出来的字符串从 1开始顺序编号,一直到 n。打字机有一个非常有趣的功能,在打字机中暗藏一个带数字的小键盘,在小键盘上输入两个数(x,y)(其中1≤x,y≤n),打字机会显示第x个打印的字符串在第y个打印的字符串中出现了多少次。 阿狸发现了这个功能以后很兴奋,他想写个程序完成同样的功能,你能帮助他么?
题解:
这题不如之前那题可以直接用其它的高级数据结构搞出来。
这题只可以AC自动机了。
还是之前那题的套路。
这样就相当于y在trie上的每一个前缀往fail跳多少个x。
反过来就是x往fail的子树跳有多少个是y的前缀。
这题显然可以离线。
先对fail树建dfs序,因为这样子树会在连续的一段里。
把询问打在y上,然后按trie的顺序走,询问就是了。
可以用树状数组或线段树维护。
Code:
#include<cstdio>
#include<cstring>
#define fo(i, x, y) for(int i = x; i <= y; i ++)
#define low(x) ((x) & -(x))
using namespace std;
const int N = 1e5 + 5;
int n, m, x, tot = 1, son[N][26], fa[N], num[N], nt; char str[N];
struct Ask {
int x, y;
} a[N];
struct edge {
int final[N], next[N], to[N], pq[N], tt;
void link(int x, int y, int z) {
next[++ tt] = final[x], to[tt] = y, pq[tt] = z, final[x] = tt;
}
} e, ac;
int ans[N];
int dfn[N], td, l[N], r[N], f[N];
void add(int x, int y) {
while(x <= tot) f[x] += y, x += low(x);
}
int find(int x) {
int s = 0;
while(x) s += f[x], x -= low(x);
return s;
}
void dfs(int x) {
dfn[x] = l[x] = ++ td;
for(int i = ac.final[x]; i; i = ac.next[i]) {
int y = ac.to[i]; dfs(y);
}
r[x] = td;
}
void dg(int x) {
add(dfn[x], 1);
fo(j, 0, 25) if(son[x][j])
dg(son[x][j]);
for(int i = e.final[x]; i; i = e.next[i]) {
int y = e.to[i], z = e.pq[i];
ans[z] = find(r[y]) - find(l[y] - 1);
}
add(dfn[x], -1);
}
int fail[N], d[N];
void Build_ac() {
fo(i, 0, 25) son[0][i] = 1;
d[0] = d[1] = 1;
fo(i, 1, d[0]) {
int x = d[i];
fo(j, 0, 25) if(son[x][j]) {
int y = son[x][j], z = fail[x];
while(!son[z][j]) z = fail[z];
fail[y] = son[z][j]; d[++ d[0]] = y;
}
}
fo(i, 1, tot) ac.link(fail[i], i, 0);
}
int main() {
scanf("%s", str + 1); m = strlen(str + 1);
x = 1;
fo(i, 1, m) {
int c = str[i];
if(c == 'B') {
x = fa[x];
} else
if(c == 'P') {
num[++ nt] = x;
} else {
c = c - 'a';
if(!son[x][c]) fa[++ tot] = x, son[x][c] = tot;
x = son[x][c];
}
}
Build_ac();
scanf("%d", &m);
fo(i, 1, m) {
scanf("%d %d", &a[i].x, &a[i].y);
e.link(num[a[i].y], num[a[i].x], i);
}
dfs(1); dg(1);
fo(i, 1, m) printf("%d\n", ans[i]);
}