有一个M * N的表格,行与列分别是1 - M和1 - N,格子中间写着行与列的最大公约数Gcd(i, j)(1 <= i <= M, 1 <= j <= N)。
例如:M = 5, n = 4。
1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
给出M和N,求这张表中有多少个质数。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 1000)
第2 - T + 1行:每行2个数M,N,中间用空格分隔,表示表格的宽和高。(1 <= M, N <= 5 * 10^6)
Output
共T行,每行1个数,表示表格中质数的数量。
Sample Input
2
10 10
100 100
Sample Output
30
2791
莫比乌斯的经典哦
设
F
(
n
)
F(n)
F(n)为
g
c
d
(
x
,
y
)
gcd(x,y)
gcd(x,y)是n的倍数的数量,易知
F
(
x
)
=
n
x
∗
m
x
F(x)=\frac{n}{x}*\frac{m}{x}
F(x)=xn∗xm
设
f
(
n
)
f(n)
f(n)为
g
c
d
(
x
,
y
)
gcd(x,y)
gcd(x,y)为n的数量,则:
F
(
n
)
=
∑
n
∣
d
f
(
d
)
F(n)=\sum_{n|d}f(d)
F(n)=n∣d∑f(d)
所以反演得:
f
(
n
)
=
∑
n
∣
d
μ
(
d
n
)
F
(
d
)
f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)
f(n)=n∣d∑μ(nd)F(d)
所以:
a
n
s
=
∑
p
为
素
数
m
i
n
(
n
,
m
)
∑
p
∣
d
μ
(
d
p
)
F
(
d
)
ans=\sum_{p为素数}^{min(n,m)}\sum_{p|d}\mu(\frac{d}{p})F(d)
ans=p为素数∑min(n,m)p∣d∑μ(pd)F(d)
转换枚举变量(固定套路):
a
n
s
=
∑
d
=
1
m
i
n
(
n
,
m
)
F
(
d
)
∑
p
∣
d
p
为
素
数
μ
(
d
p
)
ans=\sum_{d=1}^{min(n,m)}F(d)\sum_{p|d}^{p为素数}\mu(\frac{d}{p})
ans=d=1∑min(n,m)F(d)p∣d∑p为素数μ(pd)
设 s u m ( d ) = ∑ p ∣ d p 为 素 数 μ ( d p ) sum(d)=\sum_{p|d}^{p为素数}\mu(\frac{d}{p}) sum(d)=∑p∣dp为素数μ(pd),把sum这个数组预处理出来即可,但是超时了,那分块就好了,把sum处里成前缀和即可
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#define N 5000005
using namespace std;
typedef long long ll;
vector<int> prime;
bool pri[N];
int mu[N];
int sum[N];
int cal[N];
void init()
{
memset(pri,true,sizeof(pri));
mu[1]=1;
for(int i=2;i<N;i++)
{
if(pri[i])
{
prime.push_back(i);
mu[i]=-1;
}
for(int j=0;j<prime.size()&&i*prime[j]<N;j++)
{
pri[i*prime[j]]=false;
if(i%prime[j])
mu[i*prime[j]]=-mu[i];
else
{
mu[i*prime[j]]=0;
break;
}
}
}
//cout<<sum[1]<<endl;
for(int i=0;i<prime.size();i++)
for(int j=prime[i];j<N;j+=prime[i])
sum[j]+=mu[j/prime[i]];//筛法筛出sum的值
for(int i=1;i<N;i++)//处理成前缀和
cal[i]=cal[i-1]+sum[i];
}
int main()
{
int t;
init();
int n,m;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
int limit=min(n,m);
ll ans=0;
int last;
for(int i=1;i<=limit;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans+=(ll)(n/i)*(m/i)*(cal[last]-cal[i-1]);//分块
}
/*for(int i=1;i<=limit;i++)
ans+=(ll)(n/i)*(m/i)*sum[i];*///这种写法t了,才想着要分块
cout<<ans<<endl;
}
return 0;
}