[51nod1192]gcd表中的质数

Description

i=1nj=1me(gcd(i,j))

T<=1000,n,m<=5*10^6

Solution

经典反演套路题,貌似没有其他做法(其他做法的大爷不要鄙视蒟蒻=w=)
复习一下莫比乌斯反演,所以就来打了这道题
首先约定 n<m
Fd 表示 ni=1mj=1e(gcd(i,j)=d)
那么

Ans=dFd

反演,那么设 Gd 表示 ni=1mj=1e(d|gcd(i,j))
那么
Gd=ndmd

然后
Fd=i=1ndGdiμ(i)

所以
Ans=di=1ndndimdiμ(i)

接着套路,设 T=di
Ans=T=1nnTmTd|Tdμ(Td)

后面这个东西只与T有关,于是可以预处理。
1~n范围的质数不是特别多,所以预处理是很兹瓷的
而且似乎有O(n)的在线筛内处理的方法,不过本蒟蒻不会
然后就这样喽,每次询问分一下块就好了

Code

#include <cstdio>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int N=5*1e6;
int p[N+5],mu[N+5],ty,n,m;
ll ans,a[N+5];
bool bz[N+5];
int main() {
    fo(i,2,N) {
        if (!bz[i]) p[++p[0]]=i,mu[i]=-1;
        fo(j,1,p[0]) {
            int k=i*p[j];if (k>N) break;
            bz[k]=1;if (!(i%p[j])) break;
            mu[k]=-mu[i];
        }
    }
    mu[1]=1;
    fo(i,1,p[0]) fo(j,1,N/p[i]) a[p[i]*j]+=mu[j];
    fo(i,1,N) a[i]+=a[i-1];
    for(scanf("%d",&ty);ty;ty--) {
        scanf("%d%d",&n,&m);
        ans=0;if (n>m) swap(n,m);
        for(int l=1,r;l<=n;l=r+1) {
            r=min(n/(n/l),m/(m/l));
            ll sum=(ll)(n/l)*(m/l);
            ans+=sum*(a[r]-a[l-1]);
        }
        printf("%lld\n",ans);
    }
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值