Description
求
∑i=1n∑j=1me(gcd(i,j)是质数)
T<=1000,n,m<=5*10^6
Solution
经典反演套路题,貌似没有其他做法(其他做法的大爷不要鄙视蒟蒻=w=)
复习一下莫比乌斯反演,所以就来打了这道题
首先约定
n<m
设
Fd
表示
∑ni=1∑mj=1e(gcd(i,j)=d)
那么
Ans=∑d是质数Fd
反演,那么设 Gd 表示 ∑ni=1∑mj=1e(d|gcd(i,j))
那么
Gd=⌊nd⌋∗⌊md⌋
然后
Fd=∑i=1⌊nd⌋Gdi∗μ(i)
所以
Ans=∑d是质数∑i=1⌊nd⌋⌊ndi⌋∗⌊mdi⌋∗μ(i)
接着套路,设 T=di
Ans=∑T=1n⌊nT⌋∗⌊mT⌋∗∑d|T且d是质数μ(Td)
后面这个东西只与T有关,于是可以预处理。
1~n范围的质数不是特别多,所以预处理是很兹瓷的
而且似乎有O(n)的在线筛内处理的方法,不过本蒟蒻不会
然后就这样喽,每次询问分一下块就好了
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int N=5*1e6;
int p[N+5],mu[N+5],ty,n,m;
ll ans,a[N+5];
bool bz[N+5];
int main() {
fo(i,2,N) {
if (!bz[i]) p[++p[0]]=i,mu[i]=-1;
fo(j,1,p[0]) {
int k=i*p[j];if (k>N) break;
bz[k]=1;if (!(i%p[j])) break;
mu[k]=-mu[i];
}
}
mu[1]=1;
fo(i,1,p[0]) fo(j,1,N/p[i]) a[p[i]*j]+=mu[j];
fo(i,1,N) a[i]+=a[i-1];
for(scanf("%d",&ty);ty;ty--) {
scanf("%d%d",&n,&m);
ans=0;if (n>m) swap(n,m);
for(int l=1,r;l<=n;l=r+1) {
r=min(n/(n/l),m/(m/l));
ll sum=(ll)(n/l)*(m/l);
ans+=sum*(a[r]-a[l-1]);
}
printf("%lld\n",ans);
}
}