Description
求
∑i=1n∑j=1m(gcd(i,j)为质数?1:0)
数据组数 T<=1000
1<=M,N<=5∗106
Solution
很裸的一道莫比乌斯反演题,
先保证
n<=m
设
fi
表示gcd为d的倍数的数的个数
则:
fi=⌊mi⌋∗⌊ni⌋
设 gi 表示gcd为i的数的个数,
则:
fd=∑i=1⌊nd⌋gid
根据反演:
gd=∑i=1⌊nd⌋fid∗μ(i)
所以枚举每个的质数作为d即可,然而有T组数据,还过不了,
考虑一下每个f对答案的贡献,
设 fi 对答案的贡献为 sumi∗fi ,
因为d为质数,
所以,设 p 为i中的质因数,则
这样做可以过,
优化:
因为
mu(i)
只有当i为质数的乘积是,它才不为0,
所以只有当组成i的所有质数的指数都为1时
sumi≠0
,
或者组成i中的所有质数的指数只有一个为2时,
sumi=1,−1
,
因为要用分块,所以把sum做一下前缀和,
复杂度: O(n+nn√−−−−√)
Code
#include <iostream>
#include <cstdio>
#include <cstdlib>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long LL;
const int N=5*1e6+10;
int read(int &n)
{
char ch=' ';int q=0,w=1;
for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
if(ch=='-')w=-1,ch=getchar();
for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
LL n,m;
bool prz[N];
int pr[N/5];
LL ans,mu[N];
int hm[N],ssg[N];
bool ssg1[N];
LL sum[N];
int main()
{
int q,w;
prz[1]=mu[1]=1;
fo(i,2,N-1)
{
if(!prz[i])pr[++pr[0]]=i,mu[i]=-1,hm[i]=ssg[i]=1;
fo(j,1,pr[0])
{
int t=pr[j]*i;
if(t>=N)break;
prz[t]=1;
if(i%pr[j]==0)
{
ssg[t]=ssg[i]+1;
ssg1[t]=ssg1[i];
break;
}
mu[t]=-mu[i];
ssg[t]=ssg[i];ssg1[t]=!ssg1[i];
hm[t]=hm[i]+hm[pr[j]];
}
}
fo(i,2,N-1)sum[i]+=-hm[i]*mu[i]+(ssg1[i]?1:-1)*(ssg[i]==2)+sum[i-1];
for(int _=read(_);_;_--)
{
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
ans=0;
int i=2;
while(i<=n)
{
int q=min(n/(n/i),m/(m/i));
ans+=(m/i)*(n/i)*(sum[q]-sum[i-1]);
i=q+1;
}
printf("%lld\n",ans);
}
return 0;
}