【51NOD 1192】Gcd表中的质数

Description


i=1nj=1m(gcd(i,j)?1:0)

数据组数 T<=1000
1<=M,N<=5106

Solution

很裸的一道莫比乌斯反演题,
先保证 n<=m
fi 表示gcd为d的倍数的数的个数
则:

fi=mini

gi 表示gcd为i的数的个数,
则:
fd=i=1ndgid

根据反演:
gd=i=1ndfidμ(i)

所以枚举每个的质数作为d即可,然而有T组数据,还过不了,
考虑一下每个f对答案的贡献,
fi 对答案的贡献为 sumifi
因为d为质数,
所以,设 p 为i中的质因数,则sumi=μ(ip)
这样做可以过,

优化:
因为 mu(i) 只有当i为质数的乘积是,它才不为0,
所以只有当组成i的所有质数的指数都为1时 sumi0
或者组成i中的所有质数的指数只有一个为2时, sumi=11

因为要用分块,所以把sum做一下前缀和,

复杂度: O(n+nn)

Code

#include <iostream>
#include <cstdio>
#include <cstdlib>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long LL;
const int N=5*1e6+10;
int read(int &n)
{
    char ch=' ';int q=0,w=1;
    for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
    if(ch=='-')w=-1,ch=getchar();
    for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
LL n,m;
bool prz[N];
int pr[N/5];
LL ans,mu[N];
int hm[N],ssg[N];
bool ssg1[N];
LL sum[N];
int main()
{
    int q,w;
    prz[1]=mu[1]=1;
    fo(i,2,N-1)
    {
        if(!prz[i])pr[++pr[0]]=i,mu[i]=-1,hm[i]=ssg[i]=1;
        fo(j,1,pr[0])
        {
            int t=pr[j]*i;
            if(t>=N)break;
            prz[t]=1;
            if(i%pr[j]==0)
            {
                ssg[t]=ssg[i]+1;
                ssg1[t]=ssg1[i];
                break;
            }
            mu[t]=-mu[i];
            ssg[t]=ssg[i];ssg1[t]=!ssg1[i];
            hm[t]=hm[i]+hm[pr[j]];
        }
    }
    fo(i,2,N-1)sum[i]+=-hm[i]*mu[i]+(ssg1[i]?1:-1)*(ssg[i]==2)+sum[i-1];
    for(int _=read(_);_;_--)
    {
        scanf("%lld%lld",&n,&m);
        if(n>m)swap(n,m);
        ans=0;
        int i=2;
        while(i<=n)
        {
            int q=min(n/(n/i),m/(m/i));
            ans+=(m/i)*(n/i)*(sum[q]-sum[i-1]);
            i=q+1;
        }
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值