NOJ [1315] Cost in Land

链接地址:http://ac.nbutoj.com/Problem/view.xhtml?id=1315

首先我们按x,y都递减排序。其中x是宽,y是长
然后发现如果一个矩形的长宽都不大于另一个矩形的长宽。那么这个矩形的花费就是0,因为买那个矩形顺便就买了这个小的。
所以去除这些不花钱的矩形。
剩下的矩形,x是递减的,y是递增的
然后可以写出转移方程
f[i] = min(f[j] + x[j + 1] * y[i]) (j < i)
然后为了方便,把x数组坐标提前一下
f[i] = min(f[j] + x[j] * y[i]) (j < i)
然后发现是n ^2的。不优化会超时
这就要用到经典的斜率优化了
考虑两个决策f[j],f[k]并假设j<k。
如果对于f[i],从f[j]转移来比从f[k]转移来更优,那么有:
f[j]+x[j]*y[i]<f[k]+x[k]*y[i]
移项得:
y[i]<(f[k]-f[j])/(x[j]-x[k])
令g[j,k] = (f[k]-f[j])/(x[j] - x[k])
则g[j,k] > y[i] 表示j比k更优。则k可以舍弃掉
进而我们发现这么一个问题,当c < b < a < i时,如果有g[c, b] > g[b, a],那么b永远都不会成为计算dp[i]时的决策点。
证明:
如果g[c, b] > g[b, a],那么我们可以分两个方面考虑g[c, b]与的关系:
(1)如果g[c, b] >= y[i],那么决策c不会比决策b差,也就说决策b不可能是决策点
(2)如果g[c, b] < y[i],那么由于g[c, b] > g[b, a],那么g[b, a] < y[i],那么决策a要比决策b好,所以b还不能作为决策点  
根据上面的结论和一些特性,我们可以考虑维护一个斜率的队列来优化整个DP过程:


(1)假设a, b, c依次是队列右端的元素,那么我们就要考虑g[a, b]是否大于g[b, c],如果g[a, b] > g[b, c],那么可以肯定b一定不会是决策点,所以我们可以从队列中将b去掉,然后依次向前推,直到找到一个队列元素少于3个或者g[a, b] <= g[b, c]的点才停止。
(2)假设a, b是依次是队列左端的元素,那么我们知道,如果g[a, b] < y[i]的话,那么对于i来说决策点b肯定优于决策点a,又由于y是随着i递增而递增的,所以当g[a, b] < y[i]时,就一定有g[a, b] < y[i+1],因此当前的决策点a不仅仅在考虑dp[i]时不会是最佳决策点,而且在后面的DP中也一定不会是最佳决策点,所以我们可以把a从队列的头部删除,依次往后如此操作,直到队列元素小于2或者g[a, b] >= y[i]。
(3)对于i的更新,一定是队列头部的决策点最好,所以O(1)即可转移。
总体感觉斜率优化DP推起来还是比较麻烦的
然后每次对i决策时,先操作左端的元素得到最优解,然后操作右端的元素将i状态插进队列.

出题代码:

#include <set>
#include <map>
#include <list>
#include <stack>
#include <queue>
#include <cmath>
#include <cstdio>
#include <vector>
#include <iomanip>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;

#define MAXN 5010

int n;
struct node
{
int x, y;
bool operator <(const node &cmp)const
{
if (x == cmp.x) return y > cmp.y;
return x > cmp.x;
}
}p[MAXN];

__int64 x[MAXN], y[MAXN];
__int64 f[MAXN];
int q[MAXN];

int main()
{
//freopen("data.in", "r", stdin);
//freopen("data.out", "w", stdout);
while (~scanf("%d", &n))
{
for (int i = 0; i < n; i++)
{
scanf("%d%d", &p[i].x, &p[i].y);
}
sort(p, p + n);
int cnt = 0;
for (int i = 0; i < n; i++)
{
if(!cnt || p[i].y > y[cnt])
{
++cnt;
x[cnt] = p[i].x;
y[cnt] = p[i].y;
}
}
for (int i = 0; i < cnt; i++)
{
x[i] = x[i + 1];
}
int l = 1, r = 1;
q[1] = 0;
f[0] = 0;
for (int i = 1; i <= cnt; i++)
{
while (l < r && y[i] * (x[q[l]] - x[q[l + 1]]) > f[q[l + 1]] - f[q[l]]) l++;
f[i] = f[q[l]] + x[q[l]] * y[i];
while (l < r && (f[q[r]] - f[q[r - 1]]) * (x[q[r]] - x[i]) > (f[i] - f[q[r]]) * (x[q[r - 1]] - x[q[r]])) r--;
q[++r] = i;
}
printf("%I64d\n", f[cnt]);
}

return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值