常用逻辑等价式和逻辑蕴涵式(附证明)

本文详细介绍了逻辑等价式和逻辑蕴涵式的基本概念,包括交换律、结合律、分配律等重要定律,并通过真值表进行证明。同时,讨论了逻辑蕴涵式如化简式、附加式、假言推论等多种形式及其应用。最后,探讨了逻辑等价式和逻辑蕴涵式的几个关键性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑等价式

交换律

E 1 : P ∨ Q ⇔ Q ∨ P E1:P \lor Q \Leftrightarrow Q \lor P E1:PQQP
E 2 : P ∧ Q ⇔ Q ∧ P E2:P \land Q \Leftrightarrow Q \land P E2:PQQP
E 3 : P ↔ Q ⇔ Q ↔ P E3:P \leftrightarrow Q \Leftrightarrow Q \leftrightarrow P E3:PQQP

真值表

P Q P ∨ Q P \lor Q PQ Q ∨ P Q \lor P QP P ∧ Q P \land Q PQ Q ∧ P Q \land P QP P ↔ Q P \leftrightarrow Q PQ Q ↔ P Q \leftrightarrow P QP
T T T T T T T T
T F T T F F F F
F T T T F F F F
F F F F F F T T

结合律

E 4 : ( P ∨ Q ) ∨ R ⇔ P ∨ ( Q ∨ R ) E4:(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R) E4:(PQ)RP(QR)
E 5 : ( P ∧ Q ) ∧ R ⇔ P ∧ ( Q ∧ R ) E5:(P \land Q) \land R \Leftrightarrow P \land (Q \land R) E5:(PQ)RP(QR)
E 6 : ( P ↔ Q ) ↔ R ⇔ P ↔ ( Q ↔ R ) E6:(P \leftrightarrow Q) \leftrightarrow R \Leftrightarrow P \leftrightarrow (Q \leftrightarrow R) E6:(PQ)RP(QR)

分配律

E 7 : P ∧ ( Q ∨ R ) ⇔ ( P ∧ Q ) ∨ ( P ∧ R ) E7:P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R) E7:P(QR)(PQ)(PR)
E 8 : P ∨ ( Q ∧ R ) ⇔ ( P ∨ Q ) ∧ ( P ∨ R ) E8:P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R) E8:P(QR)(PQ)(PR)
E 9 : P → ( Q → R ) ⇔ ( P → Q ) → ( P → R ) E9:P \rightarrow (Q \rightarrow R) \Leftrightarrow (P \rightarrow Q) \rightarrow (P \rightarrow R) E9:P(QR)(PQ)(PR)

真值表

p q r
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值