常用逻辑等价式和逻辑蕴涵式(附证明)
逻辑等价式
交换律
E 1 : P ∨ Q ⇔ Q ∨ P E1:P \lor Q \Leftrightarrow Q \lor P E1:P∨Q⇔Q∨P
E 2 : P ∧ Q ⇔ Q ∧ P E2:P \land Q \Leftrightarrow Q \land P E2:P∧Q⇔Q∧P
E 3 : P ↔ Q ⇔ Q ↔ P E3:P \leftrightarrow Q \Leftrightarrow Q \leftrightarrow P E3:P↔Q⇔Q↔P
真值表
P | Q | P ∨ Q P \lor Q P∨Q | Q ∨ P Q \lor P Q∨P | P ∧ Q P \land Q P∧Q | Q ∧ P Q \land P Q∧P | P ↔ Q P \leftrightarrow Q P↔Q | Q ↔ P Q \leftrightarrow P Q↔P |
---|---|---|---|---|---|---|---|
T | T | T | T | T | T | T | T |
T | F | T | T | F | F | F | F |
F | T | T | T | F | F | F | F |
F | F | F | F | F | F | T | T |
结合律
E 4 : ( P ∨ Q ) ∨ R ⇔ P ∨ ( Q ∨ R ) E4:(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R) E4:(P∨Q)∨R⇔P∨(Q∨R)
E 5 : ( P ∧ Q ) ∧ R ⇔ P ∧ ( Q ∧ R ) E5:(P \land Q) \land R \Leftrightarrow P \land (Q \land R) E5:(P∧Q)∧R⇔P∧(Q∧R)
E 6 : ( P ↔ Q ) ↔ R ⇔ P ↔ ( Q ↔ R ) E6:(P \leftrightarrow Q) \leftrightarrow R \Leftrightarrow P \leftrightarrow (Q \leftrightarrow R) E6:(P↔Q)↔R⇔P↔(Q↔R)
分配律
E 7 : P ∧ ( Q ∨ R ) ⇔ ( P ∧ Q ) ∨ ( P ∧ R ) E7:P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R) E7:P∧(Q∨R)⇔(P∧Q)∨(P∧R)
E 8 : P ∨ ( Q ∧ R ) ⇔ ( P ∨ Q ) ∧ ( P ∨ R ) E8:P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R) E8:P∨(Q∧R)⇔(P∨Q)∧(P∨R)
E 9 : P → ( Q → R ) ⇔ ( P → Q ) → ( P → R ) E9:P \rightarrow (Q \rightarrow R) \Leftrightarrow (P \rightarrow Q) \rightarrow (P \rightarrow R) E9:P→(Q→R)⇔(P→Q)→(P→R)
真值表
p | q | r |
---|