本文所证逻辑等价式来源于离散数学及其应用(原书第7版),基于这些逻辑等价式,我们可以根据需要造构出自己易于操作的复合命题,是数学证明的逻辑基础. 没有难度,但非常重要,需要记忆及熟练运用. 文章最后有自己小结的记忆方法.
1.基于合取 ∧ \land ∧,析取 ∨ \lor ∨,否定 ¬ \lnot ¬运算符的逻辑等价式
1.1 恒等律
- p ∧ \land ∧T ≡ \equiv ≡p
- p ∨ \lor ∨F ≡ \equiv ≡p
p | p ∧ \land ∧T | p ∨ \lor ∨F |
---|---|---|
T | T | T |
F | F | F |
1.2 支配律
- p ∨ \lor ∨T ≡ \equiv ≡T
- p ∧ \land ∧F ≡ \equiv ≡F
p | p ∧ \land ∧F | p ∨ \lor ∨T |
---|---|---|
T | F | T |
F | F | T |
1.3 幂等律
- p ∨ \lor ∨p ≡ \equiv ≡p
- p ∧ \land ∧p ≡ \equiv ≡p
p | p ∧ \land ∧p | p ∨ \lor ∨p |
---|---|---|
T | T | T |
F | F | F |
1.4 双重否定律
- ¬ \lnot ¬( ¬ \lnot ¬p) ≡ \equiv ≡p
p | ¬ \lnot ¬p | ¬ \lnot ¬( ¬ \lnot ¬p) |
---|---|---|
T | F | T |
F | T | F |
1.5 交换定律
- p ∨ \lor ∨q ≡ \equiv ≡q ∨ \lor ∨p
- p ∧ \land ∧p ≡ \equiv ≡q ∧ \land ∧p
p | q | p ∨ \lor ∨q | q ∨ \lor ∨p | p ∧ \land ∧p | q ∧ \land ∧p |
---|---|---|---|---|---|
T | F | T | T | F | F |
T | T | T | T | T | T |
F | F | F | F | F | F |
F | T | T | T | F | F |
1.6 结合律
- (p ∨ \lor ∨q) ∨ \lor ∨r ≡ \equiv ≡p ∨ \lor ∨(q ∨ \lor ∨r)
- (p ∧ \land ∧q) ∧ \land ∧r ≡ \equiv ≡p ∧ \land ∧(q ∧ \land ∧r)
p | q | r | (p ∨ \lor ∨q) ∨ \lor ∨r | p ∨ \lor ∨(q ∨ \lor ∨r) | (p ∧ \land ∧q) ∧ \land ∧r | p ∧ \land ∧(q ∧ \land ∧r) |
---|---|---|---|---|---|---|
T | T | T | T | T | T | T |
T | T | F | T | T | F | F |
T | F | T | T | T | F | F |
T | F | F | T | T | F | F |
F | T | T | T | T | F | F |
F | T | F | T | T | F | F |
F | F | T | T | T | F | F |
F | F | F | F | F | F | F |
1.6 分配律
- p ∨ \lor ∨(q ∧ \land ∧r) ≡ \equiv ≡(p ∨ \lor ∨q) ∧ \land ∧(p ∨ \lor ∨r)
- p ∧ \land ∧(q ∨ \lor ∨r) ≡ \equiv ≡(p ∧ \land ∧q) ∨ \lor ∨(p ∧ \land ∧r)
p | q | r | p ∨ \lor ∨(q ∧ \land ∧r) | (p ∨ \lor ∨q) ∧ \land ∧(p ∨ \lor ∨r) | p ∧ \land ∧(q ∨ \lor ∨r) | (p ∧ \land ∧q) ∨ \lor ∨(p ∧ \land ∧r) |
---|---|---|---|---|---|---|
T | T | T | T | T | T | T |
T | T | F | T | T | T | T |
T | F | T | T | T | T | T |
T | F | F | T | T | F | F |
F | T | T | T | T | F | F |
F | T | F | F | F | F | F |
F | F | T | F | F | F | F |
F | F | F | F | F | F | F |
1.7 德摩根律
- ¬ \lnot ¬(p ∨ \lor ∨p) ≡ \equiv ≡ ¬ \lnot ¬p ∧ \land ∧ ¬ \lnot ¬q
- ¬ \lnot ¬(p ∧ \land ∧p) ≡ \equiv ≡ ¬ \lnot ¬p ∨ \lor ∨ ¬ \lnot ¬q
p | q | ¬ \lnot ¬(p ∨ \lor ∨p) | ¬ \lnot ¬p ∧ \land ∧ ¬ \lnot ¬q | ¬ \lnot ¬(p ∧ \land ∧p) | ¬ \lnot ¬p ∨ \lor ∨ ¬ \lnot ¬q |
---|---|---|---|---|---|
T | F | F | F | T | T |
T | T | F | F | F | F |
F | F | T | T | T | T |
F | T | F | F | T | T |
1.8 吸收律
- p ∨ \lor ∨(p ∧ \land ∧r) ≡ \equiv ≡p
- p ∧ \land ∧(p ∨ \lor ∨r) ≡ \equiv ≡p
p | q | p ∨ \lor ∨(p ∧ \land ∧r) | p ∧ \land ∧(p ∨ \lor ∨r) |
---|---|---|---|
T | F | T | T |
T | T | T | T |
F | F | F | F |
F | T | F | F |
1.9 否定律
- p ∨ \lor ∨ ¬ \lnot ¬p ≡ \equiv ≡T
- p ∧ \land ∧ ¬ \lnot ¬p ≡ \equiv ≡F
p | ¬ \lnot ¬p | p ∨ \lor ∨ ¬ \lnot ¬p | p ∧ \land ∧ ¬ \lnot ¬p |
---|---|---|---|
T | F | T | F |
F | T | T | F |
2.基于蕴含运算符的逻辑等价式
2.1 p → \rightarrow →q ≡ \equiv ≡ ¬ \lnot ¬p ∨ \lor ∨q
p | q | p → \rightarrow →q | ¬ \lnot ¬p ∨ \lor ∨q |
---|---|---|---|
T | F | F | F |
T | T | T | T |
F | F | T | T |
F | T | T | T |
2.2 p → \rightarrow →q ≡ \equiv ≡ ¬ \lnot ¬q → \rightarrow → ¬ \lnot ¬p
p | q | p → \rightarrow →q | ¬ \lnot ¬q → \rightarrow → ¬ \lnot ¬p |
---|---|---|---|
T | F | F | F |
T | T | T | T |
F | F | T | T |
F | T | T | T |
2.3 p ∨ \lor ∨q ≡ \equiv ≡ ¬ \lnot ¬p → \rightarrow →q
p | q | p ∨ \lor ∨q | ¬ \lnot ¬p → \rightarrow →q |
---|---|---|---|
T | F | T | T |
T | T | T | T |
F | F | F | F |
F | T | T | T |
2.4 p ∧ \land ∧q ≡ \equiv ≡ ¬ \lnot ¬(p → \rightarrow → ¬ \lnot ¬q)
p | q | p ∧ \land ∧q | ¬ \lnot ¬(p → \rightarrow → ¬ \lnot ¬q) |
---|---|---|---|
T | F | F | F |
T | T | T | T |
F | F | F | F |
F | T | F | F |
2.5 ¬ \lnot ¬(p → \rightarrow →q) ≡ \equiv ≡p ∧ \land ∧ ¬ \lnot ¬q
p | q | ¬ \lnot ¬(p → \rightarrow →q) | p ∧ \land ∧ ¬ \lnot ¬q |
---|---|---|---|
T | F | T | T |
T | T | F | F |
F | F | T | T |
F | T | F | F |
2.6 (p → \rightarrow →q) ∧ \land ∧(p → \rightarrow →r) ≡ \equiv ≡p → \rightarrow →(q ∧ \land ∧r)
p
→
\rightarrow
→(q
∧
\land
∧r)
≡
\equiv
≡
¬
\lnot
¬p
∨
\lor
∨(q
∧
\land
∧r) 根据已证2.1
¬
\lnot
¬q
∨
\lor
∨(q
∧
\land
∧r)
≡
\equiv
≡(
¬
\lnot
¬p
∨
\lor
∨q)
∧
\land
∧(
¬
\lnot
¬p
∨
\lor
∨r) 根据分配律
(
¬
\lnot
¬p
∨
\lor
∨q)
∧
\land
∧(
¬
\lnot
¬p
∨
\lor
∨r)
≡
\equiv
≡(p
→
\rightarrow
→q)
∧
\land
∧(p
→
\rightarrow
→r) 根据已证2.1
证毕
2.7 (p → \rightarrow →r) ∧ \land ∧(q → \rightarrow →r) ≡ \equiv ≡(p ∨ \lor ∨q) → \rightarrow →r
(p
→
\rightarrow
→r)
∧
\land
∧(q
→
\rightarrow
→r)
≡
\equiv
≡(
¬
\lnot
¬p
∨
\lor
∨r)
∧
\land
∧(
¬
\lnot
¬q
∨
\lor
∨r) 根据已证2.1
(
¬
\lnot
¬p
∨
\lor
∨r)
∧
\land
∧(
¬
\lnot
¬q
∨
\lor
∨r)
≡
\equiv
≡
¬
\lnot
¬(p
∧
\land
∧
¬
\lnot
¬r)
∧
\land
∧
¬
\lnot
¬(q
∧
\land
∧
¬
\lnot
¬r) 根据德摩根律
¬
\lnot
¬(p
∧
\land
∧
¬
\lnot
¬r)
∧
\land
∧
¬
\lnot
¬(q
∧
\land
∧
¬
\lnot
¬r)
≡
\equiv
≡
¬
\lnot
¬p
∧
\land
∧
¬
\lnot
¬q
∧
\land
∧r
∧
\land
∧r 根据交换律
¬
\lnot
¬p
∧
\land
∧
¬
\lnot
¬q
∧
\land
∧r
∧
\land
∧r
≡
\equiv
≡
¬
\lnot
¬p
∧
\land
∧
¬
\lnot
¬q
∧
\land
∧r 根据幂等律
¬
\lnot
¬p
∧
\land
∧
¬
\lnot
¬q
∧
\land
∧r
≡
\equiv
≡
¬
\lnot
¬(p
∨
\lor
∨q)
∧
\land
∧r
≡
\equiv
≡ (p
∨
\lor
∨q)
→
\rightarrow
→r 根据德摩根律和已证2.1式
证毕
2.8 (p → \rightarrow →q) ∨ \lor ∨(p → \rightarrow →r) ≡ \equiv ≡p → \rightarrow →(q ∨ \lor ∨r)
p
→
\rightarrow
→(q
∨
\lor
∨r)
≡
\equiv
≡
¬
\lnot
¬p
∨
\lor
∨(q
∨
\lor
∨r) 根据已证2.1
¬
\lnot
¬p
∨
\lor
∨(q
∨
\lor
∨r)
≡
\equiv
≡
¬
\lnot
¬p
∨
\lor
∨r
∨
\lor
∨q
∨
\lor
∨
¬
\lnot
¬p 根据幂等律
¬
\lnot
¬p
∨
\lor
∨r
∨
\lor
∨q
∨
\lor
∨
¬
\lnot
¬p
≡
\equiv
≡(p
→
\rightarrow
→q)
∨
\lor
∨(p
→
\rightarrow
→r) 根据已证2.1
证毕
2.9 (p → \rightarrow →r) ∨ \lor ∨(q → \rightarrow →r) ≡ \equiv ≡(p ∧ \land ∧q) → \rightarrow →r
(p
→
\rightarrow
→r)
∨
\lor
∨(q
→
\rightarrow
→r)
≡
\equiv
≡(
¬
\lnot
¬p
∨
\lor
∨r)
∨
\lor
∨(
¬
\lnot
¬q
∨
\lor
∨r) 根据已证2.1
(
¬
\lnot
¬p
∨
\lor
∨r)
∨
\lor
∨(
¬
\lnot
¬q
∨
\lor
∨r)
≡
\equiv
≡
¬
\lnot
¬p
∨
\lor
∨
¬
\lnot
¬q
∨
\lor
∨r 根据交换律
¬
\lnot
¬p
∨
\lor
∨
¬
\lnot
¬q
∨
\lor
∨r
≡
\equiv
≡
¬
\lnot
¬(p
∧
\land
∧q)
∨
\lor
∨r 根据德摩根律
¬
\lnot
¬(p
∧
\land
∧q)
∨
\lor
∨r
≡
\equiv
≡(p
∧
\land
∧q)
→
\rightarrow
→r根据已证2.1
证毕
3.基于双条件运算符的逻辑等价式
3.1 p ↔ \leftrightarrow ↔q ≡ \equiv ≡ (p → \rightarrow →q) ∧ \land ∧(q → \rightarrow →p)
这个是定义,不需要证明
3.2 p ↔ \leftrightarrow ↔q ≡ \equiv ≡ ¬ \lnot ¬p ↔ \leftrightarrow ↔ ¬ \lnot ¬q
¬
\lnot
¬p
↔
\leftrightarrow
↔
¬
\lnot
¬q
≡
\equiv
≡ (
¬
\lnot
¬p
→
\rightarrow
→
¬
\lnot
¬q)
∧
\land
∧(
¬
\lnot
¬q
→
\rightarrow
→
¬
\lnot
¬p)根据3.1
≡
\equiv
≡ (q
→
\rightarrow
→p)
∧
\land
∧(p
→
\rightarrow
→q) 根据2.2和3.1
证毕
3.3 p ↔ \leftrightarrow ↔q ≡ \equiv ≡ (p ∧ \land ∧q) ∨ \lor ∨( ¬ \lnot ¬q ∧ \land ∧ ¬ \lnot ¬p)
¬
\lnot
¬p
↔
\leftrightarrow
↔
¬
\lnot
¬q
≡
\equiv
≡ (
¬
\lnot
¬p
→
\rightarrow
→
¬
\lnot
¬q)
∧
\land
∧(
¬
\lnot
¬q
→
\rightarrow
→
¬
\lnot
¬p)根据3.1
≡
\equiv
≡ (p
∨
\lor
∨
¬
\lnot
¬q)
∧
\land
∧(q
∨
\lor
∨
¬
\lnot
¬p) 根据2.1
≡
\equiv
≡ (p
→
\rightarrow
→q)
∧
\land
∧(q
→
\rightarrow
→p) 根据2.1
证毕
3.3 ¬ \lnot ¬(p ↔ \leftrightarrow ↔q) ≡ \equiv ≡ p ↔ \leftrightarrow ↔ ¬ \lnot ¬q
p
↔
\leftrightarrow
↔
¬
\lnot
¬q
≡
\equiv
≡(p
→
\rightarrow
→
¬
\lnot
¬q)
∧
\land
∧(
¬
\lnot
¬q
→
\rightarrow
→p) 根据3.1
≡
\equiv
≡
¬
\lnot
¬(
¬
\lnot
¬p
∨
\lor
∨q)
∨
\lor
∨
¬
\lnot
¬(p
∨
\lor
∨
¬
\lnot
¬q) 根据2.1
≡
\equiv
≡
¬
\lnot
¬(p
→
\rightarrow
→q)
∨
\lor
∨
¬
\lnot
¬(q
→
\rightarrow
→p) 根据2.1
≡
\equiv
≡
¬
\lnot
¬((p
→
\rightarrow
→q)
∧
\land
∧(q
→
\rightarrow
→p)) 根据德摩根律和3.1
证毕
4.有助于记忆方法
- 德摩根律作用是将 ∨ \lor ∨和 ∧ \land ∧转换
- 第2大类的作用是将 → \rightarrow →和( ∨ \lor ∨, ∧ \land ∧, ¬ \lnot ¬)转换
- 第3大类是作用是将 ↔ \leftrightarrow ↔和( ∨ \lor ∨, ∧ \land ∧, ¬ \lnot ¬, → \rightarrow →)转换
- 正如逻辑运算符的运算级一样,逻辑等价式一个共同的作用是将高阶运算符转化为低阶运算符
- 第一大类和第二大类的数量是9,第3大类的数量是4,因此是994;
- 第一大类基实只需要记忆分配律和德摩根律,因为其它的凭直觉就能推出来.