基础逻辑等价式的证明

本文源于《离散数学及其应用(原书第7版)》,介绍了基于合取、析取、否定、蕴含、双条件运算符的逻辑等价式,如恒等律、支配律等,并给出部分证明过程。还提供了记忆方法,指出逻辑等价式可将高阶运算符转化为低阶运算符。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文所证逻辑等价式来源于离散数学及其应用(原书第7版),基于这些逻辑等价式,我们可以根据需要造构出自己易于操作的复合命题,是数学证明的逻辑基础. 没有难度,但非常重要,需要记忆及熟练运用. 文章最后有自己小结的记忆方法.

1.基于合取 ∧ \land ,析取 ∨ \lor ,否定 ¬ \lnot ¬运算符的逻辑等价式

1.1 恒等律
  • p ∧ \land T ≡ \equiv p
  • p ∨ \lor F ≡ \equiv p
pp ∧ \land Tp ∨ \lor F
TTT
FFF
1.2 支配律
  • p ∨ \lor T ≡ \equiv T
  • p ∧ \land F ≡ \equiv F
pp ∧ \land Fp ∨ \lor T
TFT
FFT
1.3 幂等律
  • p ∨ \lor p ≡ \equiv p
  • p ∧ \land p ≡ \equiv p
pp ∧ \land pp ∨ \lor p
TTT
FFF
1.4 双重否定律
  • ¬ \lnot ¬( ¬ \lnot ¬p) ≡ \equiv p
p ¬ \lnot ¬p ¬ \lnot ¬( ¬ \lnot ¬p)
TFT
FTF
1.5 交换定律
  • p ∨ \lor q ≡ \equiv q ∨ \lor p
  • p ∧ \land p ≡ \equiv q ∧ \land p
pqp ∨ \lor qq ∨ \lor pp ∧ \land pq ∧ \land p
TFTTFF
TTTTTT
FFFFFF
FTTTFF
1.6 结合律
  • (p ∨ \lor q) ∨ \lor r ≡ \equiv p ∨ \lor (q ∨ \lor r)
  • (p ∧ \land q) ∧ \land r ≡ \equiv p ∧ \land (q ∧ \land r)
pqr(p ∨ \lor q) ∨ \lor rp ∨ \lor (q ∨ \lor r)(p ∧ \land q) ∧ \land rp ∧ \land (q ∧ \land r)
TTTTTTT
TTFTTFF
TFTTTFF
TFFTTFF
FTTTTFF
FTFTTFF
FFTTTFF
FFFFFFF
1.6 分配律
  • p ∨ \lor (q ∧ \land r) ≡ \equiv (p ∨ \lor q) ∧ \land (p ∨ \lor r)
  • p ∧ \land (q ∨ \lor r) ≡ \equiv (p ∧ \land q) ∨ \lor (p ∧ \land r)
pqrp ∨ \lor (q ∧ \land r)(p ∨ \lor q) ∧ \land (p ∨ \lor r)p ∧ \land (q ∨ \lor r)(p ∧ \land q) ∨ \lor (p ∧ \land r)
TTTTTTT
TTFTTTT
TFTTTTT
TFFTTFF
FTTTTFF
FTFFFFF
FFTFFFF
FFFFFFF
1.7 德摩根律
  • ¬ \lnot ¬(p ∨ \lor p) ≡ \equiv ¬ \lnot ¬p ∧ \land ¬ \lnot ¬q
  • ¬ \lnot ¬(p ∧ \land p) ≡ \equiv ¬ \lnot ¬p ∨ \lor ¬ \lnot ¬q
pq ¬ \lnot ¬(p ∨ \lor p) ¬ \lnot ¬p ∧ \land ¬ \lnot ¬q ¬ \lnot ¬(p ∧ \land p) ¬ \lnot ¬p ∨ \lor ¬ \lnot ¬q
TFFFTT
TTFFFF
FFTTTT
FTFFTT
1.8 吸收律
  • p ∨ \lor (p ∧ \land r) ≡ \equiv p
  • p ∧ \land (p ∨ \lor r) ≡ \equiv p
pqp ∨ \lor (p ∧ \land r)p ∧ \land (p ∨ \lor r)
TFTT
TTTT
FFFF
FTFF
1.9 否定律
  • p ∨ \lor ¬ \lnot ¬p ≡ \equiv T
  • p ∧ \land ¬ \lnot ¬p ≡ \equiv F
p ¬ \lnot ¬pp ∨ \lor ¬ \lnot ¬pp ∧ \land ¬ \lnot ¬p
TFTF
FTTF

2.基于蕴含运算符的逻辑等价式

2.1 p → \rightarrow q ≡ \equiv ¬ \lnot ¬p ∨ \lor q
pqp → \rightarrow q ¬ \lnot ¬p ∨ \lor q
TFFF
TTTT
FFTT
FTTT
2.2 p → \rightarrow q ≡ \equiv ¬ \lnot ¬q → \rightarrow ¬ \lnot ¬p
pqp → \rightarrow q ¬ \lnot ¬q → \rightarrow ¬ \lnot ¬p
TFFF
TTTT
FFTT
FTTT
2.3 p ∨ \lor q ≡ \equiv ¬ \lnot ¬p → \rightarrow q
pqp ∨ \lor q ¬ \lnot ¬p → \rightarrow q
TFTT
TTTT
FFFF
FTTT
2.4 p ∧ \land q ≡ \equiv ¬ \lnot ¬(p → \rightarrow ¬ \lnot ¬q)
pqp ∧ \land q ¬ \lnot ¬(p → \rightarrow ¬ \lnot ¬q)
TFFF
TTTT
FFFF
FTFF
2.5 ¬ \lnot ¬(p → \rightarrow q) ≡ \equiv p ∧ \land ¬ \lnot ¬q
pq ¬ \lnot ¬(p → \rightarrow q)p ∧ \land ¬ \lnot ¬q
TFTT
TTFF
FFTT
FTFF
2.6 (p → \rightarrow q) ∧ \land (p → \rightarrow r) ≡ \equiv p → \rightarrow (q ∧ \land r)

p → \rightarrow (q ∧ \land r) ≡ \equiv ¬ \lnot ¬p ∨ \lor (q ∧ \land r) 根据已证2.1
¬ \lnot ¬q ∨ \lor (q ∧ \land r) ≡ \equiv ( ¬ \lnot ¬p ∨ \lor q) ∧ \land ( ¬ \lnot ¬p ∨ \lor r) 根据分配律
( ¬ \lnot ¬p ∨ \lor q) ∧ \land ( ¬ \lnot ¬p ∨ \lor r) ≡ \equiv (p → \rightarrow q) ∧ \land (p → \rightarrow r) 根据已证2.1
证毕

2.7 (p → \rightarrow r) ∧ \land (q → \rightarrow r) ≡ \equiv (p ∨ \lor q) → \rightarrow r

(p → \rightarrow r) ∧ \land (q → \rightarrow r) ≡ \equiv ( ¬ \lnot ¬p ∨ \lor r) ∧ \land ( ¬ \lnot ¬q ∨ \lor r) 根据已证2.1
( ¬ \lnot ¬p ∨ \lor r) ∧ \land ( ¬ \lnot ¬q ∨ \lor r) ≡ \equiv ¬ \lnot ¬(p ∧ \land ¬ \lnot ¬r) ∧ \land ¬ \lnot ¬(q ∧ \land ¬ \lnot ¬r) 根据德摩根律
¬ \lnot ¬(p ∧ \land ¬ \lnot ¬r) ∧ \land ¬ \lnot ¬(q ∧ \land ¬ \lnot ¬r) ≡ \equiv ¬ \lnot ¬p ∧ \land ¬ \lnot ¬q ∧ \land r ∧ \land r 根据交换律
¬ \lnot ¬p ∧ \land ¬ \lnot ¬q ∧ \land r ∧ \land r ≡ \equiv ¬ \lnot ¬p ∧ \land ¬ \lnot ¬q ∧ \land r 根据幂等律
¬ \lnot ¬p ∧ \land ¬ \lnot ¬q ∧ \land r ≡ \equiv ¬ \lnot ¬(p ∨ \lor q) ∧ \land r ≡ \equiv (p ∨ \lor q) → \rightarrow r 根据德摩根律和已证2.1式
证毕

2.8 (p → \rightarrow q) ∨ \lor (p → \rightarrow r) ≡ \equiv p → \rightarrow (q ∨ \lor r)

p → \rightarrow (q ∨ \lor r) ≡ \equiv ¬ \lnot ¬p ∨ \lor (q ∨ \lor r) 根据已证2.1
¬ \lnot ¬p ∨ \lor (q ∨ \lor r) ≡ \equiv ¬ \lnot ¬p ∨ \lor r ∨ \lor q ∨ \lor ¬ \lnot ¬p 根据幂等律
¬ \lnot ¬p ∨ \lor r ∨ \lor q ∨ \lor ¬ \lnot ¬p ≡ \equiv (p → \rightarrow q) ∨ \lor (p → \rightarrow r) 根据已证2.1
证毕

2.9 (p → \rightarrow r) ∨ \lor (q → \rightarrow r) ≡ \equiv (p ∧ \land q) → \rightarrow r

(p → \rightarrow r) ∨ \lor (q → \rightarrow r) ≡ \equiv ( ¬ \lnot ¬p ∨ \lor r) ∨ \lor ( ¬ \lnot ¬q ∨ \lor r) 根据已证2.1
( ¬ \lnot ¬p ∨ \lor r) ∨ \lor ( ¬ \lnot ¬q ∨ \lor r) ≡ \equiv ¬ \lnot ¬p ∨ \lor ¬ \lnot ¬q ∨ \lor r 根据交换律
¬ \lnot ¬p ∨ \lor ¬ \lnot ¬q ∨ \lor r ≡ \equiv ¬ \lnot ¬(p ∧ \land q) ∨ \lor r 根据德摩根律
¬ \lnot ¬(p ∧ \land q) ∨ \lor r ≡ \equiv (p ∧ \land q) → \rightarrow r根据已证2.1
证毕

3.基于双条件运算符的逻辑等价式

3.1 p ↔ \leftrightarrow q ≡ \equiv (p → \rightarrow q) ∧ \land (q → \rightarrow p)

这个是定义,不需要证明

3.2 p ↔ \leftrightarrow q ≡ \equiv ¬ \lnot ¬p ↔ \leftrightarrow ¬ \lnot ¬q

¬ \lnot ¬p ↔ \leftrightarrow ¬ \lnot ¬q ≡ \equiv ( ¬ \lnot ¬p → \rightarrow ¬ \lnot ¬q) ∧ \land ( ¬ \lnot ¬q → \rightarrow ¬ \lnot ¬p)根据3.1
≡ \equiv (q → \rightarrow p) ∧ \land (p → \rightarrow q) 根据2.2和3.1
证毕

3.3 p ↔ \leftrightarrow q ≡ \equiv (p ∧ \land q) ∨ \lor ( ¬ \lnot ¬q ∧ \land ¬ \lnot ¬p)

¬ \lnot ¬p ↔ \leftrightarrow ¬ \lnot ¬q ≡ \equiv ( ¬ \lnot ¬p → \rightarrow ¬ \lnot ¬q) ∧ \land ( ¬ \lnot ¬q → \rightarrow ¬ \lnot ¬p)根据3.1
≡ \equiv (p ∨ \lor ¬ \lnot ¬q) ∧ \land (q ∨ \lor ¬ \lnot ¬p) 根据2.1
≡ \equiv (p → \rightarrow q) ∧ \land (q → \rightarrow p) 根据2.1
证毕

3.3 ¬ \lnot ¬(p ↔ \leftrightarrow q) ≡ \equiv p ↔ \leftrightarrow ¬ \lnot ¬q

p ↔ \leftrightarrow ¬ \lnot ¬q ≡ \equiv (p → \rightarrow ¬ \lnot ¬q) ∧ \land ( ¬ \lnot ¬q → \rightarrow p) 根据3.1
≡ \equiv ¬ \lnot ¬( ¬ \lnot ¬p ∨ \lor q) ∨ \lor ¬ \lnot ¬(p ∨ \lor ¬ \lnot ¬q) 根据2.1
≡ \equiv ¬ \lnot ¬(p → \rightarrow q) ∨ \lor ¬ \lnot ¬(q → \rightarrow p) 根据2.1
≡ \equiv ¬ \lnot ¬((p → \rightarrow q) ∧ \land (q → \rightarrow p)) 根据德摩根律和3.1
证毕

4.有助于记忆方法

  • 德摩根律作用是将 ∨ \lor ∧ \land 转换
  • 第2大类的作用是将 → \rightarrow 和( ∨ \lor , ∧ \land , ¬ \lnot ¬)转换
  • 第3大类是作用是将 ↔ \leftrightarrow 和( ∨ \lor , ∧ \land , ¬ \lnot ¬, → \rightarrow )转换
  • 正如逻辑运算符的运算级一样,逻辑等价式一个共同的作用是将高阶运算符转化为低阶运算符
  • 第一大类和第二大类的数量是9,第3大类的数量是4,因此是994;
  • 第一大类基实只需要记忆分配律和德摩根律,因为其它的凭直觉就能推出来.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雁庸良

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值