趣味三角——第11章——一个著名的公式

目录

1. 著名无限积公式简述及证明

2. Jules Lissajous 和他的图形(Jules Lissajous and His Figures)


11 一个著名的公式

The prototype of all infinite processes is repetition. . . .

Our very concept of the infinite derives from the notion

that what has been said or done once can always be

repeated.

(所有无限过程的原型是重复……我们对无限的概念源自曾经所说或做过的概念,总是可以重复。)

——Tobias Dantzig,<< Number: The Language of Science>>(数:科学的语言)

1. 著名无限积公式简述及证明

我们还没有完全理解函数(sin x)/x。有一天,浏览一本数学公式手册,我遇到了如下的等式:

\frac{sinx}{x} = cos(\frac{x}{2}). cos(\frac{x}{4}). cos(\frac{x}{8})...    。---------------------------------(1)

因为我以前从未见过这个公式,所以我预计证明会相当困难。令我惊讶的是,它原来非常简单:

sinx = 2sin\frac{x}{2}. cos\frac{x}{2} = 4sin\frac{x}{4}. cos\frac{x}{4}. cos\frac{x}{2} = 8sin\frac{x}{8}. cos\frac{x}{8}. cos\frac{x}{4}. cos\frac{x}{2} = ...

重复这个过程n次之后,我们得到

sinx = 2^{n} sin\frac{x}{2^n} . cos\frac{x}{2^n} ..... cos\frac{x}{2}    。

我们将式子改写一下,其中,x≠0,得到

sinx = x.(\frac{ \frac{sinx}{2n}}{ \frac{x}{2n}}) . cos\frac{x}{2}. cos\frac{x}{4}. ... . cos\frac{x}{2^{n}}   。

请注意,我们已经颠倒了(因为仍是有限的)乘积中剩余项的顺序。假如我们现在保持x不变,而n->∞,则 x/2^{n} ->0, 而方括号中的表达式,符合sin α/α公式的形式,趋近于1。因此,我们得到

sin(x) = \prod_{n=1}^{\infty }cos\frac{x}{2^{n}}

其中,Π表示乘积。两边除以x我们得到等式(1)。

方程(1)由Euler[1]发现,代表了初等数学中无限乘积(infinite product)的极少数例子之一。因为等式对于所有x值都成立(如果我们定义sin 0/0 = 1的话,则也包括x = 0),我们可以代入一个值,比如,x = π/2:

\frac{sin(\frac{\pi}{2})}{\frac{\pi}{2}} = cos\frac{\pi}{4}. cos\frac{\pi}{8}. cos\frac{\pi}{16}. ....

现在,sin(\pi/2) = 1 以及 cos(\pi/4) = \sqrt{2}/2。对剩余的项使用半角公式cos (\frac{x}{2}) = \sqrt{\frac{1+cosx}{2}},稍微简化之后,我们得到

\frac{2}{\pi} =\frac{\sqrt{2}}{2}.\frac{\sqrt{2+\sqrt{2}}}{2}.\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}....,

这个漂亮的公式是由Viète在1953年发现的;在建立它时,他使用了一个几何论证,该论证基于同一圆内接的 n 条边和 2n 条边的正多边形的面积比。[2] Viète的公式标志着数学史上的一个里程碑:它是第一次将无限过程明确地写成一系列代数运算。(直到那时,数学家们都小心翼翼地避免直接提及无限过程,而是将它们视为可以重复任意多次的有限连续操作。) 通过在他的乘积末尾添加三个点,Viète大胆地宣布无限是数学的真正组成部分。 这标志着现代意义上的数学分析的开始

除了其美妙之外,Viète公式的著名之处还在于,它允许我们通过反复使用算术的四个基本运算——加法、乘法、除法和开方(square root extraction),去求得数π的值——所有的运算都是应用到数2上。甚至可以通过最简单的科学计算实现:

(在某些计算器上,内存操作STO,RCL,以及SUM分别标为M,RM和M+)。每一次迭代,你都可以通过以上所示的键排列中,按x键并松开之后迅速按1/x键,从而读出当前计算所得的π的近似值;在第九轮迭代之后,我们得到了π的一个近似值3.1415914——精确到小数点后5位的值。当然,可编程计算器会大大加快速度。

从收敛的角度考察等式(1)是有启动性的(instructive)。我们注意到,首先,部分乘积的收敛对于它们的极限值而言是单调的(monotonic);也就是说,每增加一项,我们就更接近极限。这是因为每一项都是小于1的数,导致部分乘积的值不断递减。这对sinx/x而言,其与无限级数(infinite series)形成鲜明的对比:

\frac{sin(x)}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+-...,-------------------(2)

其自顶向下交替接近其极限值。此外,尽管在某种程度上它比级数收敛慢一些,它的收敛速度也非常快。下表5对比了x = π/2时等式(1)和等式(2)的收敛速率:

表5

注意:所有的数字都四舍五入到小数点后四位。

无穷乘积快速收敛的原因可以从图68中看出。在单位圆上,我们用角度θ/2,(θ/2 + θ/4),(θ/2 + θ/4 + θ/8),等等,划分出半径。这些角组成了一个无限几何级数,其和为θ/2 + θ/4 + θ/8 + ... = θ 。现在,以x轴开始,我们从一条半径向下一条半径依次作垂直投影。这些垂直投影的长度依次为1,cos(θ/2),cos(θ/2). cos(θ/4) ,cos(θ/2). cos(θ/4). cos(θ/8),如此等等。仅经过几步之后,我们就可以看出,投影值就与其最终值几乎没有区别。

图68  无穷乘积sin(x) = \prod_{n=1}^{\infty }cos\frac{x}{2^{n}}的收敛性

 遵循每个三角恒等式都可以几何解释的原则,我们现在问我们可以赋予等式(1)什么几何意义。答案如图 69 所示。我们以圆心位于坐标原点半径为 r_{0} 的圆开始。从x轴开始,我们标出一个角θ , 它的另一边与圆相切于 P_{0} 点,现在我们将P_{0} 点和P_{1} 点连接起来,P_{1}点的坐标为(r_{0},0), 用 r_{1} 标识线段P_{0}P_{1}。角OP_{1}P_{0}的顶点位于通过P_{1}且与角θ对应同一段弧的圆的圆上,其角大小等于θ/2。对角OP_{1}P_{0}应用正弦法则,我们有

\frac{r_{0}}{sin(\theta/2)}=\frac{r_{1}}{sin(180^{\circ}-\theta)} ------------------------(3)

但是,sin(180°- θ) = sin(θ) = 2sin(θ/2)cos(θ/2);将这个等式代入等式(3)并对 r_{1} 解方程,我们得到

r_{1} = 2r_{0}cos(\theta/2) 。

我们现在以P_{1} 为圆心为r_{1}半径画出第二个圆。我们有\angle OP_{2} P_{0}=\theta/4,重复画第一个圆的这些步骤直到完成,并应用正弦法则到三角形P_{1}P_{2}P_{0} , 得到 r_{2}=2r_{1}cos(\theta/4)=4r_{0}cos(\theta/2)cos(\theta/4),其中 r_2 = P_2 P_0 。重复这个过程n次,我们得到以P_{n}为圆心 r_{n}=P_{n}P_{0}为半径的圆。解方程得

r_{n} = 2^{n} r_{0}cos(\theta/2)cos(\theta/4) cos(\theta/8)... cos(\theta/2^{n})------------(4)

现在\angle OP_{n} P_0 = \theta/2^{n},因此,应用正弦法则到三角形OP_{n}P_{0} 得到 r_{0}/sin(\theta/2^{n})=r_{n}/sin(180^{\circ}-\theta);因此,

r_{n} = \frac{r_{0} sin\theta)}{sin(\theta/2^{n})}------------------------(5)

在(4)和(5)之间消除掉 r_{0} 和 r_{n},我们得到

\frac{sin(\theta)}{sin(\theta/2^{n})} = 2^{n} cos(\theta/2)cos(\theta/4)... cos(\theta/2^{n}) ----------(6)

 随着n无限制地增加,\angle OP_{n}P_{0}无限趋近于0, 因此与其正弦值没有区别;换句话说,半径为 r_{n}的弧,趋近于从P_{0}x轴的垂线。则,用\theta/2^{n}替换掉sin(\theta/2^{n})并消除掉因子2^{n},用x替换掉θ,我们得到等式(1)。

因此,等式(1)是以下定理的三角表现形式,即内接于圆的角等于对向同一圆弧的圆心角的二分之一,一次又一次地重复,得到越来越小的角内接于越来越大的圆中。[3]

图69 公式\prod_{n=1}^{\infty }cos(x)/2^{n} = \frac{sin(x)}{x}的几何证明

注释与资料来源:

(本章节基于我的文章“A Remarkable Trigonometric Identity(一个著名的三角桓等式)”),Mathematics Teacher(数学教师杂志),卷70,编号5(1997年5月),第452-455页。

1. E. W. Hobson,<<Squaring the Circle: A History of the Problem>>(化圆为方:这个问题的历史), (Cambridge,England: Cambridge University Press, 1913),第26页。

2. 参见Petr Beckmann,<< A History of π>>(一段π的历史)( Boulder, Colo.: Golem Press,1977)。

3. 上述文章给出了基于物理考虑的等式(1)的证明。

2. Jules Lissajous 和他的图形(Jules Lissajous and His Figures)

Jules Antoine Lissajous (1822–1880)并不是科学史上的巨人,但他的名字通过“Lissajous图形(Lissajous figures)”而为物理专业的学生所熟知——Lissajous图形是两个沿垂直(perpendicular)直线的振动(vibrations)叠加(superimposed)时形成的图案。Lissajous1841年进入巴黎高等师范学院,后来成为巴黎 Lyc´ee Saint-Louis 的物理学教授,在那里他研究振动和声音。1855 年,他发明了一种研究复合振动的简单光学方法:他在每个振动物体(例如两个音叉(running forks))上安装一个小镜子,然后将一束光对准其中一个镜子。 光束首先被反射到另一个镜子,然后反射到一个大屏幕,在那里它形成了一个二维图案,这是两种振动结合的视觉结果。这个简单的想法——现代示波器的先驱——在Lissajous的时代是一个新奇事物,因为在那之前,对声音的研究完全依赖于听觉过程,即人耳。 Lissajous 确实使“看到声音”成为可能

设每次振动都是以正弦波表示的简谐运动;令ab表示振幅,\omega _{1}\omega_{2}表示角频率(以弧度/秒为单位),\phi _{1}\phi _{2}表示相位,t 表示时间。然后我们有

x = a sin(\omega_{1}t + \phi_{1}),y = b sin(\omega_{2}t + \phi_{2})---------------(1)

随着时间的推移,点P(其坐标为(x, y))将会绘制一条曲线,其方程可以通过消除(1)中的t而得到。因为这两个方程包含6个参数[1],曲线除了某些特殊情况外,往往非常复杂。例如,假如 \omega_1 = \omega_2\phi_{1}=\phi_{2},我们有

x = asin(\omega t + \phi) , y = b sin(\omega t + \phi),

在其中,我们已经去除了参数的下标。为了消除掉这些方等式国的时间t,我们注意到,x / a = y /b,因此,y = (b /a) x ,这是一条直线的方程。类似地,对于\omega_1 = \omega_2和相位差π,我们得到直线y = -(b /a) x 。对于ω1 = ω2 和相位差π/2 ,我们得到(取\phi_1= 0)

x = a sin(ωt),y = b sin(ωt + π/2) = b cos(ωt ) 。

a除以第一个等式,用b除以第二个等式,对结果平方再加相,我们得到

\frac{x^2}{a^2 } + \frac{y^2}{b^2}=1,

它表示一个椭圆,其轴沿x轴和y轴(如果再加上条件a=b,则椭圆成了一个圆)。对于任意相伴差而言,曲线将是一个倾斜的(tilted)椭圆,前面的例子是一个特例(直线y =±(b /a) x是一个退化的(degenerate)椭圆)。如果我们让相位差连续变化,椭圆会慢慢改变它的方向和形状,从圆(a = b这种情况) x^2 + y^2 = 1 到直线yx穿过然后再返回(图70)。 

 

 --------------图70 Lissajous图形,=  的情况------------------------------

 假如角频率不相等,则曲线更为复杂。例如,如果 = 2(从音乐上来讲,当两个振动相隔一个八音(an octave apart)时),我们有

x = a sin(\omega t),y = b sin(2\omega t + \phi),

其中我们又去掉下标,并取\phi_{1}=0 。现在我们获得的这种曲线取决于Φ。对于Φ = π/2,我们有

x = a sin(\omega t),y = b sin(2\omega t +\pi/2) = b cos(2\omega t ) 。

使用恒等式cos 2u = 1-2sin^{2}u 并消除两个方程之间的时间t,得到结果y = b[1-2(x/a)^{2}] 。该方程表示一条抛物线(parabola),点 P 沿该抛物线随着时间的推移来回移动。对于Φ的其它值,曲线可能是一种封闭的形状(图71)。 

 

 --------------图71 Lissajous图形,\omega_{2}=2\omega_{1} 的情况-----------------------------

另一个观察到的现象也值得一提。只要角频率比率\omega_{1}/\omega_{2}是一个比率数,曲线——无论多么复杂——最终都将自我重复,引起运动周期化。[2] 但是,如果\omega_{1}/\omega_{2}是一个非比率数,P将永远不会重绘它的路径,导致非周期性的运动。然而,随着时间的推进,曲线将渐渐填满直线x = ±ayb围成的矩形边界(图72)。

--------------图72 Lissajous图形,\omega_{1}/\omega_{2}是非比率数的情况------------------------------------------

Lissajous 的工作受到同时代人的赞扬,物理学家John Tyndall(1820-1893年)和John William Strutt(1842-1919年)在他们关于声学的经典论文中对此进行了讨论。1873年,他因“美丽的实验”获得了著名的(prestigious)拉卡兹奖(Lacaze Prize),他的方法在1867年的巴黎万国博览会上展出。但显然太阳底下没有新鲜事:Lissajous的图形早在很久以前就被自学成长的美国科学家Nathaniel Bowditch(1773-1838 年)教授发现了,他于1815年用复摆制造了它们。[3] 该装置的一种变体,其中两个摆的运动结合在一起,并通过附在其中一个摆上的笔在纸上描绘出来钟摆,成为 19 世纪流行的科学演示(图 73); 随后的图形被称为“谐波图(harmonograms)”,它们令人难以置信的多样性总是给观众留下深刻印象(图 74)。[4] Lissajous方法的新颖之处在于它脱离了机械设备,而是依赖于效率更高的光代理。在这方面,他是一个有远见的人,预言了我们的现代电子时代

--------------图73 谐波记录器,来自17世纪的科技图书---------------------

------------------------------图74谐波图--------------------------------

1. 事实上,5个参数足够了,因为只有相对相位(relative phase)(即相位差)起重要作用。

2. 该周期将是两个单独周期的最小公倍数(the least common multiple)。

3. Florian Cajori, <<A History of Physics>> (1898年初版, 1928年修订版; New York: Dover, 1962重印), 第288–289页。

4. 1980 年,我和同事Wilbur Hoppe在威斯康星大学欧克莱尔分校的数学模型研讨会上制作了一个复摆(compound pendulum)。图74中所示的图案是使用该设备生成的。

内容来源:

<<Trigonometric Delights>> 作者:Eli Maor

  

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值