机器学习实战:主成分分析(PCA)深度解析(附完整代码与可视化)

目录

一、PCA数学本质:正交投影的几何之美

1.1 方差最大化原理

1.2 奇异值分解(SVD)实现

1.3 方差贡献率计算

二、Scikit-Learn实战:从入门到精通

2.1 基础应用模板

2.2 主成分可视化

三、高级技巧:工业级应用方案

3.1 增量PCA处理大数据

3.2 随机PCA加速计算

3.3 特征重要性分析

四、实战案例:图像压缩与重建

4.1 压缩重建全流程

4.2 压缩率与质量分析

五、PCA陷阱与解决方案

5.1 常见问题诊断表

5.2 非线性数据场景处理

六、最佳实践框架

6.1 PCA应用决策树

6.2 全流程模板代码


一、PCA数学本质:正交投影的几何之美

1.1 方差最大化原理

目标函数

\max_{w} \frac{1}{n} w^T X^T X w \quad \text{s.t.} \ w^T w = 1
求解过程:通过特征值分解得到主成分方向

1.2 奇异值分解(SVD)实现

矩阵分解公式
X = U \Sigma V^T

  • V的列向量即为主成分方向

  • Σ对角线元素为奇异值的平方根

1.3 方差贡献率计算

import numpy as np
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA

digits = load_digits()
X = digits.data

pca = PCA().fit(X)
explained_variance = pca.explained_variance_ratio_

plt.figure(figsize=(10,6))
plt.plot(np.cumsum(explained_variance))
plt.xlabel('主成分数量')
plt.ylabel('累计方差解释率')
plt.axhline(0.95, color='r', linestyle='--')
plt.grid(True)

二、Scikit-Learn实战:从入门到精通

2.1 基础应用模板

from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

# 构建标准化+PCA流程
pca_pipe = Pipeline([
    ('scaler', StandardScaler()),
    ('pca', PCA(n_components=0.95))
])

X_reduced = pca_pipe.fit_transform(X)
print(f"原始维度: {X.shape[1]}")
print(f"降维后维度: {X_reduced.shape[1]}")

2.2 主成分可视化

plt.figure(figsize=(10,8))
plt.scatter(X_reduced[:,0], X_reduced[:,1], 
            c=digits.target, cmap='tab10', alpha=0.6)
plt.colorbar(label='数字类别')
plt.xlabel('第一主成分')
plt.ylabel('第二主成分')
plt.title('MNIST数据PCA降维可
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值