机器学习专栏(47):Keras人工神经网络入门指南(附完整代码与可视化)

目录

一、从生物神经元到人工神经元的进化之路

1.1 生物启发与数学建模

二、多层感知机(MLP)架构解析

2.1 手写数字识别实战

2.2 模型结构可视化

三、Keras核心API实战指南

3.1 数据预处理流程

3.2 模型训练与监控

3.3 训练过程可视化

四、工业级应用:房价预测回归模型

4.1 数据标准化与建模

4.2 模型保存与部署

五、Keras高级技巧:自定义组件

5.1 自定义损失函数

5.2 自定义评估指标

六、性能优化与调参指南

6.1 超参数搜索策略

6.2 不同优化器对比

七、最佳实践与避坑指南

7.1 数据预处理黄金法则

7.2 常见问题解决方案


一、从生物神经元到人工神经元的进化之路

1.1 生物启发与数学建模

McCulloch-Pitts神经元模型

y = \begin{cases} 1 & \text{if } \displaystyle\sum w_i x_i + b \geq 0 \\ 0 & \text{otherwise} \end{cases}

现代激活函数进化

import tensorflow as tf
import matplotlib.pyplot as plt

x = tf.linspace(-5., 5., 200)
activations = {
    "Sigmoid": tf.sigmoid,
    "ReLU": tf.nn.relu,
    "Swish": lambda x: x * tf.sigmoid(x)
}

plt.figure(figsize=(12, 6))
for i, (name, func) in enumerate(activations.items()):
    plt.subplot(1, 3, i+1)
    plt.plot(x, func(x))
    plt.title(name)
plt.tight_layout()

二、多层感知机(MLP)架构解析

2.1 手写数字识别实战

from tensorflow.keras import layers, models

# 构建MLP模型
model = models.Sequential([
    layers.Flatten(input_shape=(28, 28)),
    layers.Dense(512, activation='relu'),
    layers.Dropout(0.2),
    layers.Dense(256, activation='relu'),
    layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
             loss='sparse_categorical_crossentropy',
             metrics=['accuracy'])

2.2 模型结构可视化

from tensorflow.keras.utils import plot_model

plot_model(model, to_file='mlp_architecture.png', show_shapes=True)

三、Keras核心API实战指南

3.1 数据预处理流程

from tensorflow.keras.datasets import mnist

# 加载与预处理数据
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train / 255.0
X_test = X_test / 255.0

# 添加通道维度(可选,适配不同后端)
# X_train = X_train[..., tf.newaxis]
# X_test = X_test[..., tf.newaxis]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值