目录
一、AI认知革命:从“人工智障”到“人工智能”
1. 三句话讲清AI本质
-
模型 = 会学习的数学公式
-
训练 = 做五年高考三年模拟
-
推理 = 上考场解题
2. AI模型分类指南
模型类型 | 擅长领域 | 生活比喻 | 典型应用 |
---|---|---|---|
分类模型 | 识别类别 | 垃圾分类小能手 | 人脸识别、垃圾邮件过滤 |
回归模型 | 预测数值 | 房价评估师 | 股票预测、销量预估 |
生成模型 | 内容创造 | 天才画家+作家 | AI绘画、ChatGPT |
3. 大模型:AI界的博士
当普通模型还在做选择题时,大模型已经能写博士论文:
-
参数规模:从百万级到万亿级(人脑突触约100万亿)
-
超能力:跨任务学习、上下文理解、逻辑推理
-
代表作:GPT-4(文本)、Stable Diffusion(图像)
二、开发环境搭建:AI工程师的“数字厨房”
1. 基础工具三件套
Python 3.8+:AI界的普通话
# 验证安装
python --version
Jupyter Notebook:AI实验室笔记本
pip install jupyterlab
VS Code:代码编辑器中的瑞士军刀
2. 必备工具包
# 一行命令装齐所有工具
!pip install numpy pandas matplotlib scikit-learn tensorflow keras
3. 硬件加速配置
GPU检测:
import tensorflow as tf
print("GPU可用性:", tf.config.list_physical_devices('GPU'))
Colab白嫖指南:
-
新建笔记本 → 运行时 → 更改运行时类型 → 选择GPU
三、数据炼金术:把原始数据变成AI的黄金
1. 加州房价数据集实战
from sklearn.datasets import fetch_california_housing
import pandas as pd
# 加载数据
housing