目录
一、预训练模型全景解析
1.1 模型家族图谱
1.2 主流模型性能对比
模型名称 | 参数量(M) | Top-1准确率 | 推理速度(ms) | 适用场景 |
---|---|---|---|---|
ResNet50 | 25.6 | 76.0% | 8.2 | 通用图像分类 |
EfficientNetB7 | 66 | 84.3% | 15.7 | 高精度识别 |
MobileNetV3 | 5.4 | 75.2% | 3.1 | 移动端部署 |
Xception | 22.9 | 79.0% | 10.5 | 细粒度分类 |
ViT-B16 | 86 | 85.3% | 23.4 | 大数据量场景 |
# 一键加载最新EfficientNetV2模型
from keras.applications import EfficientNetV2B3
model = EfficientNetV2B3(
weights='imagenet',
include_top=True,
input_shape=(300, 300, 3)
二、迁移学习全流程实战
2.1 数据预处理标准化流程
def build_data_pipeline(model_name='resnet50'):
# 获取模型特定预处理
preprocess_fn = getattr(keras.applications, model_name).preprocess_input
# 构建数据增强管道
augmentation = keras.Sequential([
layers.RandomRotation(0.2),
layers.RandomZoom(0.3),
layers.RandomContrast(0.1),
layers.RandomTranslation(0.1, 0.1)
])
return lambda x: preprocess_fn(augmentation(x))
2.2 特征提取与微调策略
2.2.1 双阶段训练法
# 阶段一:冻结特征提取层
base_model = ResNet50(include_top=False, pooling='avg')
for layer in base_model.layers:
layer.trainable = False
# 阶段二:解冻顶层进行微调
for layer in base_model.layers[-20:]:
layer.trainable = True
2.2.2 差异化学率设置
# 分层学习率配置
optimizer = keras.optimizers.Adam(
learning_rate=keras.optimizers.schedules.PiecewiseConstantDecay(
boundaries=[1000, 3000],
values=[1e-4, 1e-5, 1e-6]
)
)
三、工业级应用案例
3.1 智能质检系统
def build_defect_detector():
base = MobileNetV3Small(input_shape=(512, 512, 3), include_top=False)
spatial_attention = keras.Sequential([
layers.GlobalAvgPool2D(),
layers.Reshape((1, 1, 576)),
layers.Conv2D(32, 1, activation='relu'),
layers.Conv2D(576, 1, activation='sigmoid')
])
x = base.output
att = spatial_attention(x)
x = layers.Multiply()([x, att])
outputs = layers.Dense(10, activation='softmax')(x)
return keras.Model(inputs=base.input, outputs=outputs)
3.2 跨模态检索系统
class CrossModalRetrieval(keras.Model):
def __init__(self, text_model, image_model):
super().__init__()
self.text_encoder = text_model
self.image_encoder = image_model
self.logit_scale &#