DeepSider插件正式接入阿里QwQ-32B模型

阿里新出的AI"小钢炮"——325亿参数的QwQ-32B凭啥吊打行业顶流DeepSeek?

今天凌晨,阿里最新开源QwQ-32B模型,别看它参数只有325亿(相当于普通手机内存大小),但性能直接对标行业顶流DeepSeek-R1(6710亿参数)。

性能强劲

QwQ-32B在数学推理、代码生成等核心能力上,直接对标6710亿参数的DeepSeek-R1满血版。

这种“小身材、高能力”的特性,得益于两阶段强化学习训练:先通过冷启动数据建立基础推理逻辑,再针对数学/编程/通用任务进行动态优化,最终实现多步问题解决能力的跃升。

​成本碾压

显存需求从行业顶流的1400G直接砍到120G,普通消费级显卡(如RTX 4090)就能跑
部署成本仅为同类模型的1/20,企业不用砸钱买专业设备。

普通用户如何使用QwQ-32B?

若想随时随地与QwQ-32B交互,推荐安装DeepSider浏览器插件。

DeepSider支持在网页侧边栏直接开启对话界面,无需切换应用即可调用模型能力——无论是调试代码、解答数学题,还是生成创意文案,都能通过浏览器实现无缝衔接。

此外,DeepSider还支持DeepSeek-R1满血版模型,以及DeepSeek-V3,刚好可以与QwQ-32B进行对比测试。

DeepSider插件安装方法

Chrome:访问Chrome Web Store搜索“DeepSider”,点击“添加”

Edge:因商店版本更新较慢,建议在deepsider.ai网站下载离线版安装文件,拖拽到浏览器扩展管理页,完成安装

### QwQ-32B 模型架构解析 大型语言模型QwQ-32B通常基于Transformer架构构建,这是一种广泛应用于自然语言处理任务中的神经网络框架[^1]。该类模型通过多层自注意力机制来捕捉输入序列内部的关系,从而实现高效的信息传递。 #### 主要组件构成 1. **编码器(Encoder)** 编码器负责接收原始文本数据并将其转换成向量表示形式。每一层都包含了多个子模块,其中包括一个多头自注意单元以及一个全连接前馈网络。这种设计使得模型能够在不同位置之间建立联系的同时保持计算效率。 2. **解码器(Decoder)** 解码器用于生成目标序列,在机器翻译等应用中尤为关键。类似于编码部分,这里也采用了类似的分层结构;不过额外引入了一个交叉关注机制,允许解码过程利用来自源端的信息指导输出。 3. **嵌入层(Embedding Layer)** 输入词被映射到连续空间内的稠密向量,此操作由嵌入矩阵完成。对于像QwQ这样的预训练模型而言,初始权重往往已经过大规模语料库上的无监督学习获得优化。 4. **位置编码(Positional Encoding)** Transformer并不具备内置的时间/顺序感知能力,因此需要显式加入关于词语相对或绝对位置的信息。这通常是借助正弦波函数或者可训练参数表征的位置特征实现。 5. **规范化与激活函数** 各种类型的标准化方法(Layer Normalization)、非线性变换(ReLU/GELU等),有助于稳定梯度流动、加速收敛速度,并赋予表达更复杂模式的能力。 值得注意的是,尽管上述描述概括了典型的大规模预训练语言模型的设计原则,但对于特定版本如QwQ-32B的具体细节,则需参照官方文档获取最权威说明[^2]。 ```python import torch.nn as nn class TransformerModel(nn.Module): def __init__(self, vocab_size, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1): super().__init__() self.embedding = nn.Embedding(vocab_size, d_model) self.positional_encoding = PositionalEncoding(d_model, dropout) encoder_layer = nn.TransformerEncoderLayer( d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout ) decoder_layer = nn.TransformerDecoderLayer( d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout ) self.transformer = nn.Transformer( d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, custom_encoder=nn.TransformerEncoder(encoder_layer, num_encoder_layers), custom_decoder=nn.TransformerDecoder(decoder_layer, num_decoder_layers) ) def forward(self, src, tgt): src_emb = self.positional_encoding(self.embedding(src)) tgt_emb = self.positional_encoding(self.embedding(tgt)) output = self.transformer(src_emb, tgt_emb) return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值