解决PyG 报错 from torch_geometric.nn.pool.topk_pool import topk, filter_adj

文章讲述了在使用PyTorch的PyG库构建图神经网络时遇到关于topk_pool模块导入错误的问题,原因在于版本更新导致的语法变化。作者提供了通过替换和自定义函数解决此问题的方法,以及相关源码分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:

使用Pytorch 的 PyG 搭建 图神经网络 报错

can not import topk, filter_adj from torch_geometric.nn.pool.topk_pool 

解决

版本问题 语法变化
topk => SelectTopk
filter_adj => FilterEdges

from torch_geometric.nn.pool.connect import FilterEdges
from torch_geometric.nn.pool.select import SelectTopK

发现替换后不可以
于是进去看SelectTopK\FilterEdges 源码
发现里面有 topk, filter_adj 方法 但是直接 import 也不能用
于是手动写函数出来再 layers.py 里即可运行

def topk(
        x: Tensor,
        ratio: Optional[Union[float, int]],
        batch: Tensor,
        min_score: Optional[float] = None,
        tol: float = 1e-7,
) -> Tensor:
    if min_score is not None:
        # Make sure that we do not drop all nodes in a graph.
        scores_max = scatter(x, batch, reduce='max')[batch] - tol
        scores_min = scores_max.clamp(max=min_score)

        perm = (x > scores_min).nonzero().view(-1)
        return perm

    if ratio is not None:
        num_nodes = scatter(batch.new_ones(x.size(0)), batch, reduce='sum')

        if ratio >= 1:
            k = num_nodes.new_full((num_nodes.size(0),), int(ratio))
        else:
            k = (float(ratio) * num_nodes.to(x.dtype)).ceil().to(torch.long)

        x, x_perm = torch.sort(x.view(-1), descending=True)
        batch = batch[x_perm]
        batch, batch_perm = torch.sort(batch, descending=False, stable=True)

        arange = torch.arange(x.size(0), dtype=torch.long, device=x.device)
        ptr = cumsum(num_nodes)
        batched_arange = arange - ptr[batch]
        mask = batched_arange < k[batch]

        return x_perm[batch_perm[mask]]


def filter_adj(
        edge_index: Tensor,
        edge_attr: Optional[Tensor],
        node_index: Tensor,
        cluster_index: Optional[Tensor] = None,
        num_nodes: Optional[int] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
    num_nodes = maybe_num_nodes(edge_index, num_nodes)

    if cluster_index is None:
        cluster_index = torch.arange(node_index.size(0),
                                     device=node_index.device)

    mask = node_index.new_full((num_nodes,), -1)
    mask[node_index] = cluster_index

    row, col = edge_index[0], edge_index[1]
    row, col = mask[row], mask[col]
    mask = (row >= 0) & (col >= 0)
    row, col = row[mask], col[mask]

    if edge_attr is not None:
        edge_attr = edge_attr[mask]

    return torch.stack([row, col], dim=0), edge_attr

参考官方文档

https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/pool/topk_pool.html

### 安装 `torch_geometric` 和其子模块 为了成功安装并使用 `torch_geometric.nn` 模块,需要遵循特定的步骤来确保所有依赖项正确配置。以下是详细的说明: #### 1. 环境准备 确保 Python 版本兼容(推荐使用 Python 3.8 或更高版本)。此外,确认已安装 CUDA 驱动程序以及相应的 cuDNN 库(如果计划在 GPU 上运行模型),或者可以仅基于 CPU 进行开发。 #### 2. 安装 PyTorch PyTorch 是 `torch_geometric` 的基础库,因此需先安装合适的 PyTorch 版本。可以通过以下命令完成安装: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 上述命令适用于 NVIDIA CUDA 11.8 的环境。如果没有 GPU 支持,则可移除 `--index-url` 参数以安装纯 CPU 版本[^1]。 #### 3. 安装 `torch-geometric` 由于 `torch_geometric` 对应的具体版本与其依赖项紧密关联,建议按照官方文档中的方法进行安装。例如,对于指定版本的安装,可以执行如下命令: ```bash pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-2.0.0+cu118.html ``` 此 URL 中包含了针对 PyTorch 2.0.0 和 CUDA 11.8 的预编译二进制文件。如果使用的 PyTorch 版本不同,请调整链接地址至匹配的版本号[^2]。 #### 4. 解决常见错误 当尝试导入 `torch_geometric` 而未预先安装必要的扩展包时,可能会触发类似以下的错误提示: ``` ModuleNotFoundError: No module named 'torch_geometric.utils.to_dense_adj' ``` 这是因为在某些情况下,核心功能依赖于额外的组件如 `torch_sparse`、`torch_cluster` 等。这些工具必须单独引入才能正常工作[^3]。 #### 5. 使用 `torch_geometric.nn` 一旦完成了以上准备工作,就可以顺利调用 `torch_geometric.nn` 提供的各种图神经网络层定义及其辅助函数。下面是一个简单的例子展示如何构建 GNN 模型结构: ```python from torch_geometric.datasets import Planetoid import torch_geometric.transforms as T from torch_geometric.nn import GCNConv dataset = Planetoid(root='/tmp/Cora', name='Cora', transform=T.NormalizeFeatures()) model = GCNConv(dataset.num_node_features, dataset.num_classes) print(model) ``` --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zoe_ya

如果你成功申请,可以打赏杯奶茶

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值