万字保姆级全网最细解析YOLOv5,多图警告,师妹用了都说棒!

文章介绍了如何利用YOLOv5深度学习模型进行动物骨骼的自动检测。首先,通过MakeSense网站进行数据标注,然后详细阐述了YOLO系列的发展,特别是YOLOv5的特性,如高精度、高效性和易用性。接着,描述了模型训练的流程,包括数据准备、标签转换、训练参数配置和模型评估。最后,提到了模型测试和部署的过程,以及在实际应用中的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1方法

1.1.1制作训练样本

登录Make Sense网站(https://www.makesense.ai/)

1.1.2鸡胫骨深度学习模型制备

1.1.2.1Yolo的原理

YOLOv1是YOLO系列的第一个版本,于2015年提出。使用单个卷积神经网络(CNN)模型进行目标检测。将输入图像分为网格,并在每个网格单元中预测目标的边界框和类别。使用全连接层来预测边界框坐标和目标类别概率。相对较低的准确率,但在速度上具有优势。

YOLOv2在YOLOv1的基础上进行了改进,于2016年提出。引入Darknet-19网络架构,使用更深的卷积层提取特征。使用锚框(anchor boxes)来预测不同尺度的边界框。引入多尺度训练和预测,在不同层级上进行目标检测。使用Batch Normalization和卷积层的细微改进,提高了准确率。

YOLOv3是YOLO系列的第三个版本,于2018年提出。使用更强大的Darknet-53作为基础网络,

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值