1方法
1.1.1制作训练样本
登录Make Sense网站(https://www.makesense.ai/)
1.1.2鸡胫骨深度学习模型制备
1.1.2.1Yolo的原理
YOLOv1是YOLO系列的第一个版本,于2015年提出。使用单个卷积神经网络(CNN)模型进行目标检测。将输入图像分为网格,并在每个网格单元中预测目标的边界框和类别。使用全连接层来预测边界框坐标和目标类别概率。相对较低的准确率,但在速度上具有优势。
YOLOv2在YOLOv1的基础上进行了改进,于2016年提出。引入Darknet-19网络架构,使用更深的卷积层提取特征。使用锚框(anchor boxes)来预测不同尺度的边界框。引入多尺度训练和预测,在不同层级上进行目标检测。使用Batch Normalization和卷积层的细微改进,提高了准确率。
YOLOv3是YOLO系列的第三个版本,于2018年提出。使用更强大的Darknet-53作为基础网络,