pytorch解决cuda显存问题的方法

在使用JupyterNotebook进行深度学习时,遇到显存持续增加直至爆满的问题。尽管使用了`torch.cuda.empty_cache()`来尝试手动清理CUDA显存,但依然在多次迭代后出现问题。文章指出,JupyterNotebook进程结束并不会自动清理显存,因此建议在结束进程时采用`os.getpid()`结合`kill-9`命令强制终止并清理显存。
摘要由CSDN通过智能技术生成

使用jupyter notebook
之前前面几百次迭代都没问题,但显存越来越大,最后炸了,这还亏着是4090
我觉得是cuda自动清理显存机制有问题,一直不自动清理
方法尝试:每轮迭代之后使用一次:

torch.cuda.empty_cache()

此外,jupyter notebook结束进程后不会自动清理显存,还需

import os
 
pid = os.getpid()
!kill -9 $pid
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值