参数估计-点估计

定义

设统计模型为 { P θ   θ ∈ Θ } \{P_\theta\,\theta \in \Theta\} {PθθΘ},任何与总g有关的待估计量可以看成是参数空间 Θ \Theta Θ上的实值函数 q ( θ ) q(\theta) q(θ), g ( θ ) g(\theta) g(θ)称为参数

用来估计参数 g ( θ ) g(\theta) g(θ)的实值统计量 T ( X ) T(X) T(X)称为 g ( θ ) g(\theta) g(θ)的估计量,简称为估计

通常用记号 g ^ \hat g g^表示估计,相当于 g ^ ( θ ) \hat g(\theta) g^(θ)

点估计

频率替换原理

相当于用频率来替换概率,在样本试验次数无穷大的时候,频率=概率

但是在实际之中,每次试验结果发生的概率 p i p_i pi不是独立变换的,而是依赖于 m m m维参数 θ = ( θ 1 , θ 2 , . . . θ m ) \theta=(\theta_1,\theta_2,...\theta_m) θ=(θ1,θ2,...θm)的连续函数, p i = h i ( θ 1 , θ 2 , . . . , θ m ) , i = 1 , 2 , . . . , k p_i=h_i(\theta_1,\theta_2,...,\theta_m),i=1,2,...,k pi=hi(θ1,θ2,...,θm),i=1,2,...,k

假定方程可解, θ \theta θ可以用 p i p_i pi表示, q ( θ ) = g ( p 1 , p 2 , . . . , p k ) q(\theta)=g(p_1,p_2,...,p_k) q(θ)=g(p1,p2,...,pk),然后把 p i p_i pi q i q_i qi替换

矩估计法

主要思想是基于频率替换原理,样本的矩依概率收敛于总体的矩

设总体的前r个原点矩存在,即 m j ( θ ) = E θ ( X j ) , j = 1 , 2 , . . . , r , θ = ( θ 1 , θ 2 , . . . , θ m ) m_j(\theta)=E_\theta(X^j),j=1,2,...,r,\theta = (\theta_1,\theta_2,...,\theta_m) mj(θ)=Eθ(Xj),j=1,2,...,r,θ=(θ1,θ2,...,θm)

相应的样本的前 r r r个原点矩为 m ^ j = 1 n Σ i = 1 n X i j , j = 1 , 2 , . . . , r \hat m_j=\frac 1n\Sigma_{i=1}^nX_i^j,j=1,2,...,r m^j=n1Σi=1nXij,j=1,2,...,r

假设需要估计 q ( θ ) q(\theta) q(θ),先将其表示为前r个原点矩的函数,然后反解+替换原理即可

通常做题的方法也是通过 E ( X ) , E ( X 2 ) . . . E(X),E(X^2)... E(X),E(X2)...用未知参数表示,然后解方程

优点
  • 不依赖于总体的分布,简便
  • 只要n足够大,精度高
缺点
  • 样本容量一定,精度低
  • 总体的k阶矩要存在
  • 未知参数能够写为总体的原点矩的函数形式

注意 总体有的时候不一定存在适当阶矩,比如柯西分布

极大似然估计

最早是由高斯在处理正态分布的时候提出的

设总体 X X X的密度函数为 f ( x , θ ) f(x,\theta) f(x,θ), θ \theta θ是未知参数,那么极大似然函数就是 L = ∏ i = 1 n f θ ( x i , θ ) L=\prod_{i=1}^nf_\theta(x_i,\theta) L=i=1nfθ(xi,θ)

如果是离散型,就是 L = ∏ i = 1 n P θ ( X i = x i ) L=\prod_{i=1}^nP_\theta(X_i=x_i) L=i=1nPθ(Xi=xi)

然后要求哪个参数的估计,对这个函数求偏导即可

理解

其实极大似然估计就是让参数尽可能的与数据相匹配

可以将 L L L理解为一个联合分布的概率,代表出现当前样本的概率

(但我们当前已经发生了,已经是1),然后让 L L L这个概率尽可能大,贴近我们当前的事实(贴近1)

均方误差准则

假设用 T ( x ) T(x) T(x)作为参数 q ( θ ) q(\theta) q(θ)的估计量,评价估计优劣的一个准则定义如下

M S E θ ( T ) = R ( θ , T ) = E ( T ( x ) − q ( θ ) ) 2 MSE_\theta(T)=R(\theta,T)=E(T(x)-q(\theta))^2 MSEθ(T)=R(θ,T)=E(T(x)q(θ))2

如果 R ( θ , T ) < + ∞ , R ( θ , T ) = D θ ( T ( x ) ) + b 2 ( θ , T ) , b ( θ , T ) = E θ [ T ( x ) − q ( θ ) ] R(\theta,T)<+\infty,R(\theta,T)=D_\theta(T(x))+b^2(\theta,T),b(\theta,T)=E_\theta[T(x)-q(\theta)] R(θ,T)<+,R(θ,T)=Dθ(T(x))+b2(θ,T),b(θ,T)=Eθ[T(x)q(θ)]

推导

点估计的无偏性
估计的目的是找到一个 θ ^ = θ \hat \theta=\theta θ^=θ,但 θ ^ \hat \theta θ^是个随机变量,需要衡量效果

E ∣ θ ^ − θ ∣ E|\hat \theta-\theta| Eθ^θ来衡量差距,但 E ∣ θ ^ − θ ∣ E|\hat \theta-\theta| Eθ^θ不是一个光滑的函数,所以我们采用 E ( θ ^ − θ ) 2 E(\hat \theta-\theta)^2 E(θ^θ)2来衡量

E ( θ ^ − θ ) 2 = E ( θ ^ − E ( θ ^ ) + E ( θ ^ ) − θ ) 2 = D ( θ ^ ) + ( E ( θ ^ ) − θ ) 2 + 2 E ( θ ^ − θ ) E ( θ ^ − E ( θ ^ ) ) = D ( θ ^ ) + ( E ( θ ^ ) − θ ) 2 \begin{aligned} E(\hat \theta-\theta)^2&=E(\hat\theta-E(\hat\theta)+E(\hat\theta)-\theta)^2\\ &=D(\hat\theta)+(E(\hat\theta)-\theta)^2+2E(\hat\theta-\theta)E(\hat\theta-E(\hat\theta))\\ &=D(\hat\theta)+(E(\hat\theta)-\theta)^2\\ \end{aligned} E(θ^θ)2=E(θ^E(θ^)+E(θ^)θ)2=D(θ^)+(E(θ^)θ)2+2E(θ^θ)E(θ^E(θ^))=D(θ^)+(E(θ^)θ)2

b ( θ , T ) b(\theta,T) b(θ,T)称为偏差,如果 b ( θ , T ) = 0 b(\theta,T)=0 b(θ,T)=0,则为无偏估计

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值