命题逻辑
命题的定义
具有确定真假意义的陈述句
联结词
联结词也称为真值函数,000 和 111 称为 000 元真值函数,设n≥1n\geq 1n≥1,称{0,1}n\{0,1\}^n{0,1}n到{0,1}\{0,1\}{0,1}的函数为nnn元真值函数
¬\neg¬ 为一元联结词,∧,∨,⊕,→,↔\land,\lor,\oplus,\rightarrow,\leftrightarrow∧,∨,⊕,→,↔为二元联结词
优先级:¬,∧,∨,⊕,→,↔\neg,\land,\lor,\oplus,\rightarrow,\leftrightarrow¬,∧,∨,⊕,→,↔
公式和真值赋值
命题逻辑之中的变元是命题变元,常元是000和111,函数是真值函数
命题变元也称为原子公式
公式的定义
设SSS是联结词(0,10,10,1也是联结词)的集合,由SSS生成的公式定义如下:
(1)原子公式是由SSS生成的公式
(2)如果ccc是SSS中的000元联结词,则ccc是由SSS生成的公式
(3)若n≥1n\geq 1n≥1,FFF是SSS中的nnn元联结词,A1,...,AnA_1,...,A_nA1,...,An是由SSS生成的公式,则FA1...AnFA_1...A_nFA1...An是SSS生成的公式
不同的类别
永真式 每一个真值赋值都为1
可满足式 至少有一个真值赋值为1
永假式 每一个真值赋值都为0
真值赋值
全体命题变元组成的集合到集合{0,1}\{0,1\}{0,1}的函数为真值赋值(也就是把全体变元赋值用0,10,10,1来替代)
用pvp^vpv来表示vvv赋值给命题变元ppp的真值, $ p^v = c \Leftrightarrow v = (p/c)$
替换实例
用公式B1,...,BnB_1,...,B_nB1,...,Bn分别替换公式AAA中的不同命题变元p1,...,pnp_1,...,p_np1,...,pn得到的公式记为AB1,...,Bnp1,...,pnA_{B_1,...,B_n}^{p_1,...,p_n}AB1,...,Bnp1,...,pn,称之为AAA的一个替换实例
定理
v(AB1,...,Bnp1,...,pn)=v[p1/v(B1),...,pn/v(Bn)](A)v(A_{B_1,...,B_n}^{p_1,...,p_n}) = v[p_1/v(B_1),...,p_n/v(B_n)](A)v(AB1,...,Bnp1,...,pn)=v[p1/v(B1),...,pn/v(Bn)](A)
其中v′=v[p1/v(B1),...,pn/v(Bn)]v' = v[p_1/v(B_1),...,p_n/v(B_n)]v′=v[p1/v(B1),...,pn/v(Bn)]
等值演算
假设A,BA,BA,B为公式,如果对于每一个真值赋值vvv,v(A)=v(B)v(A) = v(B)v(A)=v(B),也称A,BA,BA,B等值,记为A⇔B,A⇔BA\Leftrightarrow B,A\Leftrightarrow BA⇔B,A⇔B当且仅当A↔A\leftrightarrowA↔为永真式
对偶定理
假设AAA是由{0,1,¬,∧,∨}\{0,1,\neg,\land,\lor\}{0,1,¬,∧,∨}生成的公式,将AAA中的∧,∨\land,\lor∧,∨互换,0,10,10,1互换得到A∗A^*A∗,称A∗A^*A∗与AAA互为对偶式
定理
前置定义: 如果真值赋值v1,v2v_1,v_2v1,v2满足对于每个命题变元ppp,pv1≠pv2p^{v_1}\neq p^{v_2}pv1=pv2,称v1,v2v_1,v_2v1,v2是相反的
如果A∗A^*A∗和AAA是对偶式,v,v′v,v'v,v′是相反的真值赋值,则v(A∗)=¬v′(A)v(A^*) = \neg v'(A)v(A∗)=¬v′(A)
证明:归纳假设(也就是数学归纳法)
如果A∗,AA^*,AA∗,A为对偶式,B∗,BB^*,BB∗,B为对偶式,如果A⇔B,A∗⇔B∗A\Leftrightarrow B,A^*\Leftrightarrow B^*A⇔B,A∗⇔B∗
联结词的完全集
设FFF是nnn元联结词,p1,...,pnp_1,...,p_np1,...,pn是不同的命题变元,如果公式AAA中不出现除p1,...,pnp_1,...,p_np1,...,pn之外的命题变元,并且$ A \Leftrightarrow Fp_1…p_n,则称,则称,则称A定义定义定义F$
如果存在由联结词集合SSS生成的公式来定义FFF,则称FFF可由SSS定义(说白了就是一个n元联结词可以由几个其他的联结词的集合代替)
完全集
如果每个n(n≥1)n(n\geq 1)n(n≥1) 都可以由SSS定义,则称SSS为完全集,如果SSS中任意去掉一个都不为完全集,则为极小完全集
{¬,∧,∨}\{\neg,\land,\lor\}{¬,∧,∨}为完全集,{⊕,↔}\{\oplus,\leftrightarrow\}{⊕,↔}不是完全集
{¬,∧},{¬,∨},{¬,→}\{\neg,\land\},\{\neg,\lor\},\{\neg,\rightarrow\}{¬,∧},{¬,∨},{¬,→}为极小完全集
范式
定义
原子公式和原子公式的否定统称为文字,如果一个文字恰好为另一个文字的否定,那么他们为相反的文字
如果AiA_iAi为文字()
简单合取式: A1∧...∧AnA_1\land...\land A_nA1∧...∧An
简单析取式: A1∨...∨AnA_1\lor...\lor A_nA1∨...∨An
合取范式: 若AiA_iAi都是简单析取式,$A_1\land …\land A_n $为合取范式
析取范式: 若AiA_iAi都是简单合取式,$A_1\lor …\lor A_n $为析取范式
tips
单个文字既是简单合取式,又是简单析取式
一个简单合取式可以看成合取范式,也可以看作析取范式
主范式
极大项和极小项
设pip_ipi为不同的命题变元,如果对于每个AiA_iAi,AiA_iAi为pip_ipi或¬pi\neg p_i¬pi
则A1∨...∨AnA_1\lor...\lor A_nA1∨...∨An为关于p1,...,pnp_1,...,p_np1,...,pn的极大项,有唯一的一个真值赋值使其为0
则A1∧...∧AnA_1\land...\land A_nA1∧...∧An为关于p1,...,pnp_1,...,p_np1,...,pn的极小项,有唯一的一个真值赋值使其为1
定义
如果AiA_iAi是关于p1,...,pnp_1,...,p_np1,...,pn的不同极小项,则A1∨...∨AmA_1\lor ... \lor A_mA1∨...∨Am为关于p1,...,pnp_1,...,p_np1,...,pn的主析取范式
如果AiA_iAi是关于p1,...,pnp_1,...,p_np1,...,pn的不同极大项,则A1∧...∧AmA_1\land ... \land A_mA1∧...∧Am为关于p1,...,pnp_1,...,p_np1,...,pn的主合取范式
主合取范式和主析取范式互为对偶式
逻辑推论
定义
满足: 如果真值赋值vvv满足公式集合Γ\GammaΓ中的每一个公式,称vvv满足Γ\GammaΓ,Γ\GammaΓ为可满足的
推出: Γ\GammaΓ是公式集合,AAA是公式,如果每个满足Γ\GammaΓ的真值赋值都满足AAA,称Γ⊨A\Gamma\models AΓ⊨A,如果不成立,Γ⊭A\Gamma \not\models AΓ⊨A
也就是知道前提的公式正确,后面的公式就一定正确
定理
-
AAA 是公式,则⊨A\models A⊨A当且仅当 AAA 为永真式
-
若Ai,BA_i,BAi,B为公式,则A1,...,Am⊨BA_1,...,A_m\models BA1,...,Am⊨B当且仅当A1∧...∧An→BA_1\land ... \land A_n\rightarrow BA1∧...∧An→B为永真式
-
A,BA,BA,B是公式,A⇔BA\Leftrightarrow BA⇔B 当且仅当A⊨BA\models BA⊨B且B⊨AB\models AB⊨A
4.Γ∪{A}⊨B\Gamma \cup \{A\} \models BΓ∪{A}⊨B当且仅当Γ⊨A→B\Gamma \models A \rightarrow BΓ⊨A→B
5.公式集{Ai}\{A_i\}{Ai}是可满足的,当且仅当A1∧...∧AnA_1\land ...\land A_nA1∧...∧An是可满足的
6.若Γ\GammaΓ是公式集,且Γ\GammaΓ 是不可满足的,当且仅当每个公式都是Γ\GammaΓ的逻辑推论(也就是前提是错误的,可以推出所有的东西)