命题逻辑

命题逻辑

命题的定义

具有确定真假意义的陈述句

联结词

联结词也称为真值函数,000111 称为 000 元真值函数,设n≥1n\geq 1n1,称{0,1}n\{0,1\}^n{0,1}n{0,1}\{0,1\}{0,1}的函数为nnn元真值函数

¬\neg¬ 为一元联结词,∧,∨,⊕,→,↔\land,\lor,\oplus,\rightarrow,\leftrightarrow,,,,为二元联结词

优先级:¬,∧,∨,⊕,→,↔\neg,\land,\lor,\oplus,\rightarrow,\leftrightarrow¬,,,,,

公式和真值赋值

命题逻辑之中的变元是命题变元,常元是000111,函数是真值函数

命题变元也称为原子公式

公式的定义

SSS是联结词(0,10,10,1也是联结词)的集合,由SSS生成的公式定义如下:

(1)原子公式是由SSS生成的公式

(2)如果cccSSS中的000元联结词,则ccc是由SSS生成的公式

(3)若n≥1n\geq 1n1,FFFSSS中的nnn元联结词,A1,...,AnA_1,...,A_nA1,...,An是由SSS生成的公式,则FA1...AnFA_1...A_nFA1...AnSSS生成的公式

不同的类别

永真式 每一个真值赋值都为1

可满足式 至少有一个真值赋值为1

永假式 每一个真值赋值都为0

真值赋值

全体命题变元组成的集合到集合{0,1}\{0,1\}{0,1}的函数为真值赋值(也就是把全体变元赋值用0,10,10,1来替代)

pvp^vpv来表示vvv赋值给命题变元ppp的真值, $ p^v = c \Leftrightarrow v = (p/c)$

替换实例

用公式B1,...,BnB_1,...,B_nB1,...,Bn分别替换公式AAA中的不同命题变元p1,...,pnp_1,...,p_np1,...,pn得到的公式记为AB1,...,Bnp1,...,pnA_{B_1,...,B_n}^{p_1,...,p_n}AB1,...,Bnp1,...,pn,称之为AAA的一个替换实例

定理

v(AB1,...,Bnp1,...,pn)=v[p1/v(B1),...,pn/v(Bn)](A)v(A_{B_1,...,B_n}^{p_1,...,p_n}) = v[p_1/v(B_1),...,p_n/v(B_n)](A)v(AB1,...,Bnp1,...,pn)=v[p1/v(B1),...,pn/v(Bn)](A)

其中v′=v[p1/v(B1),...,pn/v(Bn)]v' = v[p_1/v(B_1),...,p_n/v(B_n)]v=v[p1/v(B1),...,pn/v(Bn)]

等值演算

假设A,BA,BA,B为公式,如果对于每一个真值赋值vvv,v(A)=v(B)v(A) = v(B)v(A)=v(B),也称A,BA,BA,B等值,记为A⇔B,A⇔BA\Leftrightarrow B,A\Leftrightarrow BAB,AB当且仅当A↔A\leftrightarrowA为永真式

对偶定理

假设AAA是由{0,1,¬,∧,∨}\{0,1,\neg,\land,\lor\}{0,1,¬,,}生成的公式,将AAA中的∧,∨\land,\lor,互换,0,10,10,1互换得到A∗A^*A,称A∗A^*AAAA互为对偶式

定理

前置定义: 如果真值赋值v1,v2v_1,v_2v1,v2满足对于每个命题变元ppp,pv1≠pv2p^{v_1}\neq p^{v_2}pv1=pv2,称v1,v2v_1,v_2v1,v2是相反的

如果A∗A^*AAAA是对偶式,v,v′v,v'v,v是相反的真值赋值,则v(A∗)=¬v′(A)v(A^*) = \neg v'(A)v(A)=¬v(A)

证明:归纳假设(也就是数学归纳法)

如果A∗,AA^*,AA,A为对偶式,B∗,BB^*,BB,B为对偶式,如果A⇔B,A∗⇔B∗A\Leftrightarrow B,A^*\Leftrightarrow B^*AB,AB

联结词的完全集

FFFnnn元联结词,p1,...,pnp_1,...,p_np1,...,pn是不同的命题变元,如果公式AAA中不出现除p1,...,pnp_1,...,p_np1,...,pn之外的命题变元,并且$ A \Leftrightarrow Fp_1…p_n,则称,则称,A定义定义F$

如果存在由联结词集合SSS生成的公式来定义FFF,则称FFF可由SSS定义(说白了就是一个n元联结词可以由几个其他的联结词的集合代替)

完全集

如果每个n(n≥1)n(n\geq 1)n(n1) 都可以由SSS定义,则称SSS为完全集,如果SSS中任意去掉一个都不为完全集,则为极小完全集

{¬,∧,∨}\{\neg,\land,\lor\}{¬,,}为完全集,{⊕,↔}\{\oplus,\leftrightarrow\}{,}不是完全集

{¬,∧},{¬,∨},{¬,→}\{\neg,\land\},\{\neg,\lor\},\{\neg,\rightarrow\}{¬,},{¬,},{¬,}为极小完全集

范式

定义

原子公式和原子公式的否定统称为文字,如果一个文字恰好为另一个文字的否定,那么他们为相反的文字

如果AiA_iAi为文字()

简单合取式: A1∧...∧AnA_1\land...\land A_nA1...An

简单析取式: A1∨...∨AnA_1\lor...\lor A_nA1...An

合取范式: 若AiA_iAi都是简单析取式,$A_1\land …\land A_n $为合取范式

析取范式: 若AiA_iAi都是简单合取式,$A_1\lor …\lor A_n $为析取范式

tips

单个文字既是简单合取式,又是简单析取式

一个简单合取式可以看成合取范式,也可以看作析取范式

主范式
极大项和极小项

pip_ipi为不同的命题变元,如果对于每个AiA_iAi,AiA_iAipip_ipi¬pi\neg p_i¬pi

A1∨...∨AnA_1\lor...\lor A_nA1...An为关于p1,...,pnp_1,...,p_np1,...,pn的极大项,有唯一的一个真值赋值使其为0

A1∧...∧AnA_1\land...\land A_nA1...An为关于p1,...,pnp_1,...,p_np1,...,pn的极小项,有唯一的一个真值赋值使其为1

定义

如果AiA_iAi是关于p1,...,pnp_1,...,p_np1,...,pn的不同极小项,则A1∨...∨AmA_1\lor ... \lor A_mA1...Am为关于p1,...,pnp_1,...,p_np1,...,pn的主析取范式

如果AiA_iAi是关于p1,...,pnp_1,...,p_np1,...,pn的不同极大项,则A1∧...∧AmA_1\land ... \land A_mA1...Am为关于p1,...,pnp_1,...,p_np1,...,pn的主合取范式

主合取范式和主析取范式互为对偶式

逻辑推论

定义

满足: 如果真值赋值vvv满足公式集合Γ\GammaΓ中的每一个公式,称vvv满足Γ\GammaΓ,Γ\GammaΓ为可满足的

推出: Γ\GammaΓ是公式集合,AAA是公式,如果每个满足Γ\GammaΓ的真值赋值都满足AAA,称Γ⊨A\Gamma\models AΓA,如果不成立,Γ⊭A\Gamma \not\models AΓA

也就是知道前提的公式正确,后面的公式就一定正确

定理
  1. AAA 是公式,则⊨A\models AA当且仅当 AAA 为永真式

  2. Ai,BA_i,BAi,B为公式,则A1,...,Am⊨BA_1,...,A_m\models BA1,...,AmB当且仅当A1∧...∧An→BA_1\land ... \land A_n\rightarrow BA1...AnB为永真式

  3. A,BA,BA,B是公式,A⇔BA\Leftrightarrow BAB 当且仅当A⊨BA\models BABB⊨AB\models ABA

4.Γ∪{A}⊨B\Gamma \cup \{A\} \models BΓ{A}B当且仅当Γ⊨A→B\Gamma \models A \rightarrow BΓAB

5.公式集{Ai}\{A_i\}{Ai}是可满足的,当且仅当A1∧...∧AnA_1\land ...\land A_nA1...An是可满足的

6.若Γ\GammaΓ是公式集,且Γ\GammaΓ 是不可满足的,当且仅当每个公式都是Γ\GammaΓ的逻辑推论(也就是前提是错误的,可以推出所有的东西)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值