项目二 CIFAR10与ImageNet图像识别(一)

本文介绍了CIFAR10数据集,包括数据集简介、下载与读取机制。在TensorFlow中,通过文件名队列和FixedLengthRecordReader进行数据读取,并详细阐述了如何将数据集保存为图片形式。
摘要由CSDN通过智能技术生成

1 CIFAR10数据集

1.1 数据集简介

    CIFAR10是一个包含十个类别RGB图像的用于识别普适物体的小型数据集。其内共有50000张训练图片与10000张测试图片,图片尺寸为32*32。

1.2下载数据集中数据

import cifar10
import tensorflow as tf

# tf.app.flags.FLAGS是TensorFlow内部的一个全局变量存储器,同时可以用于命令行参数的处理
FLAGS = tf.app.flags.FLAGS
# 在cifar10模块中预先定义了f.app.flags.FLAGS.data_dir为CIFAR-10的数据路径
FLAGS.data_dir = 'cifar10_data/'

# 如果不存在数据文件,就会执行下载
cifar10.maybe_download_and_extract()

    以上两条语句的目的在于将下载的目录地址调整为相对路径下的cifar10_data,而最后一句是检查是否已经下载,若未下载则执行下载命令。当python中显示“下载成功”时,则意味着图片数据下载完毕。

1.3Tensorflow中数据读取机制

    在普通计算机读取数据的时候,一般多线程的形式进行数据读取,而对于tf,在内存队列之前又添加了一个“文件名队列”以方便管理。

    如上图所示,处理数据程序运行之前,应先把数据放入到文件名队列之中,在程序启动之后࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值