高精度 大数 加减乘除问题(含 阶乘 与 低精度)

高精度加法

只能是两个正整数相加

string add(string str1,string str2) //高精度加法
{
    string str;
    int len1=str1.length(),len2=str2.length();
    //前面补 0,弄成长度相同
    if(len1<len2)
    	str1.append(len2-len1,'0');
    else
    	str2.append(len1-len2,'0');
    len1=str1.length();
    int jw=0;
    int temp;
    for(int i=len1-1;i>=0;i--)
    {
        temp=str1[i]-'0'+str2[i]-'0'+jw;
        jw=temp/10;
        temp%=10;
        str=char(temp+'0')+str;
    }
    if(jw!=0)  str=char(jw+'0')+str;
    return str;
}

高精度减法

只能是两个正整数相减,而且要大减小(str1-str2)

string sub(string str1,string str2)//高精度减法
{
    string str;
    int tmp=str1.length()-str2.length();
    int jw=0;
    for(int i=str2.length()-1;i>=0;i--)
    {
        if(str1[tmp+i]<str2[i]+jw)
        {
            str=char(str1[tmp+i]-str2[i]-jw+'0'+10)+str;
            jw=1;
        }
        else
        {
            str=char(str1[tmp+i]-str2[i]-jw+'0')+str;
            jw=0;
        }
    }
    for(int i=tmp-1;i>=0;i--)
    {
        if(str1[i]-jw>='0')
        {
            str=char(str1[i]-jw)+str;
            jw=0;
        }
        else
        {
            str=char(str1[i]-jw+10)+str;
            jw=1;
        }
    }
    str.erase(0,str.find_first_not_of('0'));//去除结果中多余的前导0
    return str;
}

高精度乘法

只能是两个正整数相乘
# 需要高精度加法

string mul(string str1,string str2)
{
    string str;
    int len1=str1.length();
    int len2=str2.length();
    string tempstr;
    for(int i=len2-1;i>=0;i--)
    {
        tempstr="";
        int temp=str2[i]-'0';
        int t=0;
        int jw=0;
        if(temp!=0)
        {
            for(int j=1;j<=len2-1-i;j++)
              tempstr+="0";
            for(int j=len1-1;j>=0;j--)
            {
                t=(temp*(str1[j]-'0')+jw)%10;
                jw=(temp*(str1[j]-'0')+jw)/10;
                tempstr=char(t+'0')+tempstr;
            }
            if(jw!=0) tempstr=char(jw+'0')+tempstr;
        }
        str=add(str,tempstr);
    }
    str.erase(0,str.find_first_not_of('0'));
    return str;
}

高精度除法

两个正整数相除,商为 quotient,余数为 residue
# 需要高精度减法和乘法

// compare比较函数:相等返回 0,大于返回 1,小于返回 -1
int compare(string str1,string str2) //只有除法会用到 
{
    if(str1.length()>str2.length()) return 1;
    else if(str1.length()<str2.length())  return -1;
    else return str1.compare(str2);
}
void div(string str1,string str2,string &quotient,string &residue)
{
    quotient=residue=""; //清空
    if(str2=="0") //判断除数是否为0
    {
        quotient=residue="ERROR";
        return;
    }
    if(str1=="0") //判断被除数是否为0
    {
        quotient=residue="0";
        return;
    }
    int res=compare(str1,str2);
    if(res<0)
    {
        quotient="0";
        residue=str1;
        return;
    }
    else if(res==0)
    {
        quotient="1";
        residue="0";
        return;
    }
    else
    {
        int len1=str1.length();
        int len2=str2.length();
        string tempstr;
        tempstr.append(str1,0,len2-1);
        for(int i=len2-1;i<len1;i++)
        {
            tempstr=tempstr+str1[i];
            tempstr.erase(0,tempstr.find_first_not_of('0'));
            if(tempstr.empty())
              tempstr="0";
            for(char ch='9';ch>='0';ch--) //试商
            {
                string str,tmp;
                str=str+ch;
                tmp=mul(str2,str);
                if(compare(tmp,tempstr)<=0) //试商成功
                {
                    quotient=quotient+ch;
                    tempstr=sub(tempstr,tmp);
                    break;
                }
            }
        }
        residue=tempstr;
    }
    quotient.erase(0,quotient.find_first_not_of('0'));
    if(quotient.empty()) quotient="0";
}

--------------------------------- 其 他 ---------------------------------------

阶乘问题(整型数组)

#include <bits/stdc++.h>
using namespace std;
int a[5000];
int factorial(int a[],int n) // 阶乘大于等于2(n>=2) 
{
	a[1]=1; //必须设为 1
    int i,j;
    int p=1,jw=0; //p代表位数,jw代表进位
    for(i=2;i<=n;i++) //从 2开始
    {
        jw=0;
        for(j=1;j<=p;j++) //高精度 *单精度
        {
            a[j]=a[j]*i+jw;
            jw=a[j]/10;
            a[j]=a[j]%10;
        }
        while(jw) //如果还有进位,处理进位
        {
            a[j]=jw%10;
            jw/=10;
            j++;
        }
        p=j-1;
    }
    return p; //返回位数
}
int main()
{
	int sum=factorial(a,3);
	for(int i=1;i<=sum;i++)
	{
		cout<<a[i];
	}
    return 0;
}

2n 问题(整型数组)

#include<bits/stdc++.h>
using namespace std;
int f[501],p,res[501],sav[1001];//乘法要开两倍长度
void result_1()
{
    memset(sav,0,sizeof(sav));
    for(register int i=1;i<=500;i+=1)
        for(register int j=1;j<=500;j+=1)
            sav[i+j-1]+=res[i]*f[j];//先计算每一位上的值(不进位)
    for(register int i=1;i<=500;i+=1)
    {
        sav[i+1]+=sav[i]/10;//单独处理进位问题,不容易出错
        sav[i]%=10;
    }
    memcpy(res,sav,sizeof(res)); //注意 sizeof的是第一次参数
}
void result_2()
{
    memset(sav,0,sizeof(sav));
    for(register int i=1;i<=500;i+=1)
        for(register int j=1;j<=500;j+=1)
            sav[i+j-1]+=f[i]*f[j]; //注意是 +=
    for(register int i=1;i<=500;i+=1)
    {
        sav[i+1]+=sav[i]/10;
        sav[i]%=10;
    }
    memcpy(f,sav,sizeof(f));
}
int main()
{
    scanf("%d",&p);
    int temp=p*log10(2)+1;
    res[1]=1;
    f[1]=2;//高精度赋初值
    while(p!=0)//快速幂模板
    {
        if(p%2==1)result_1();
        p/=2;
        result_2();
    }
    for(register int i=temp;i>=1;i--)
    	printf("%d",res[i]);
    return 0;
}

高精度乘低精度(string)

#include <bits/stdc++.h>
using namespace std;
int main()
{
	string s, str = ""; //原高精度 后高精度 
	int n, jw = 0; //低精度 进位 
	cin >> s >> n;
	int len = s.length();
    for(int i = len-1; i >= 0;i--)
    {
        int temp = (s[i]-'0')* n + jw;
        jw = temp/10;
        temp %= 10;
        str = char(temp + '0') + str;
    }
    cout << str;
	return 0;
}

高精度除低精度(string)

#include <bits/stdc++.h>
using namespace std;
int main()
{
	stringstream ss;
	string s, tmp;
	// t 是商(整型) temp 是余数 
	int a, t = 0, temp = 0; 
	cin >> s >> a;
	int len = s.length();
	t = (s[0] - '0') / a; //提取第一个字符 
	if ((t != 0 && len > 1) || len == 1) //之所以额外加 len,是因为后面的 for循环是从 i=1开始 
		ss << t;
	temp = (s[0] - '0') % a;
	for (int i = 1; i < len; i++) //从 i=1开始 
	{
		t = (temp * 10 + s[i] - '0') / a;
		ss << t;
		temp = (temp * 10 + s[i] - '0') % a;
	}
	ss >> tmp;
	cout << tmp <<" "<< temp; // tmp 是商 temp 是余数 
	return 0;
}

高精度乘低精度(vector)

#include <bits/stdc++.h>
using namespace std;
vector<int> mul(vector<int> &A, int b) //A为高精度数,b为低精度数
{
	// C = A * b, A >= 0, b > 0
    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size() || t; i ++ )
    {
        if (i < A.size()) t += A[i] * b; //用来解决最高位进位的问题
        C.push_back(t % 10); //保留下最右边一位
        t /= 10;
    }
    return C;
}
int main()
{
    vector<int> A={1,2,3}; //高精度(原高精度是反着输入)
    A=mul(A,2); //乘低精度
    reverse(A.begin(),A.end());
	for(vector<int>::iterator it=A.begin();it!=A.end();it++)
		cout<<*it;
    return 0;
}

output: 642

第 6 行 “||t” 与第 8 行的判断用来解决最高位进位的问题

HugeCalc 是一款高精度算法库(同时支持 MBCS + UNICODE 版),适合于大规模科学计算,尤其适用于数论、密码学等领域研究,其核心算法耗费作者十余年的心血。具有占用资源少、效率高、使用便捷、易二次开发、可移植性强、可扩展性好等特点。关键文件 HugeCalc.dll 虽然很小,却提供了公共函数接口 709 个(标准C++接口 473 个;标准C接口 236 个),且其计算速度完全可与大型专业数学工具软件媲美! 现已提供了如下功能: ⊙ 高精度快速加法 ⊙ 高精度快速减法 ⊙ 高精度快速乘法 ⊙ 高精度快速除法 ⊙ 高精度快速同余 ⊙ 高精度快速位运算 ⊙ 高精度快速乘方 ⊙ 高精度快速开方 ⊙ 超大整数快速取对数 ⊙ 高精度快速求排列 ⊙ 高精度快速求组合 ⊙ 高精度快速阶乘、双阶乘、素数阶乘高精度快速计算 Fibonacci、Lucas 数列 ⊙ 高精度快速乘积取模 ⊙ 高精度快速数论倒数取模运算 ⊙ 高精度快速乘方取模(支持负指数) ⊙ 高精度快速求最大公约数(支持群组运算) ⊙ 高精度快速计算扩展最大公约数 ⊙ 高精度快速求最小公倍数(支持群组运算) ⊙ 高精度快速“等幂和”(支持群组运算) ⊙ 高精度快速任意进制转换 ⊙ 超大整数素性快速检测 ⊙ 生成随机超大(素)整数、快速生成最邻近素数 ⊙ 自由指定有效位运算 ⊙ 强大而灵活的输出 ⊙ 高精度计时器(有暂停、累计、复位等功能) 为了与广大网友分享 HugeCalc 带来的便捷,该版公开了 HugeCalc.dll 的所有接口文件(同时支持 MBCS + UNICODE 版),大家可以更自由地进行高精度计算或自开发,而无须再依赖于 Mathematica 等大型软件。 V6.x 新增了各种标准导入接口,可方便各种编程语言进行二次开发,如 C++、C、VB、Delphi 等。 V7.x 可自动侦测用户 CPU 的型号,并据此自动调整算法及相应参数,使在兼顾老式机器的前提下,可充分发挥现代及未来 CPU 的功效(如采用 SSE2 指令集、多核并行等)。 最新版下载地址:http://www.emath.ac.cn/software.htm#HugeCalc
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值