高精度加法
只能是两个正整数相加
string add(string str1,string str2) //高精度加法
{
string str;
int len1=str1.length(),len2=str2.length();
//前面补 0,弄成长度相同
if(len1<len2)
str1.append(len2-len1,'0');
else
str2.append(len1-len2,'0');
len1=str1.length();
int jw=0;
int temp;
for(int i=len1-1;i>=0;i--)
{
temp=str1[i]-'0'+str2[i]-'0'+jw;
jw=temp/10;
temp%=10;
str=char(temp+'0')+str;
}
if(jw!=0) str=char(jw+'0')+str;
return str;
}
高精度减法
只能是两个正整数相减,而且要大减小(str1-str2)
string sub(string str1,string str2)//高精度减法
{
string str;
int tmp=str1.length()-str2.length();
int jw=0;
for(int i=str2.length()-1;i>=0;i--)
{
if(str1[tmp+i]<str2[i]+jw)
{
str=char(str1[tmp+i]-str2[i]-jw+'0'+10)+str;
jw=1;
}
else
{
str=char(str1[tmp+i]-str2[i]-jw+'0')+str;
jw=0;
}
}
for(int i=tmp-1;i>=0;i--)
{
if(str1[i]-jw>='0')
{
str=char(str1[i]-jw)+str;
jw=0;
}
else
{
str=char(str1[i]-jw+10)+str;
jw=1;
}
}
str.erase(0,str.find_first_not_of('0'));//去除结果中多余的前导0
return str;
}
高精度乘法
只能是两个正整数相乘
# 需要高精度加法
string mul(string str1,string str2)
{
string str;
int len1=str1.length();
int len2=str2.length();
string tempstr;
for(int i=len2-1;i>=0;i--)
{
tempstr="";
int temp=str2[i]-'0';
int t=0;
int jw=0;
if(temp!=0)
{
for(int j=1;j<=len2-1-i;j++)
tempstr+="0";
for(int j=len1-1;j>=0;j--)
{
t=(temp*(str1[j]-'0')+jw)%10;
jw=(temp*(str1[j]-'0')+jw)/10;
tempstr=char(t+'0')+tempstr;
}
if(jw!=0) tempstr=char(jw+'0')+tempstr;
}
str=add(str,tempstr);
}
str.erase(0,str.find_first_not_of('0'));
return str;
}
高精度除法
两个正整数相除,商为 quotient,余数为 residue
# 需要高精度减法和乘法
// compare比较函数:相等返回 0,大于返回 1,小于返回 -1
int compare(string str1,string str2) //只有除法会用到
{
if(str1.length()>str2.length()) return 1;
else if(str1.length()<str2.length()) return -1;
else return str1.compare(str2);
}
void div(string str1,string str2,string "ient,string &residue)
{
quotient=residue=""; //清空
if(str2=="0") //判断除数是否为0
{
quotient=residue="ERROR";
return;
}
if(str1=="0") //判断被除数是否为0
{
quotient=residue="0";
return;
}
int res=compare(str1,str2);
if(res<0)
{
quotient="0";
residue=str1;
return;
}
else if(res==0)
{
quotient="1";
residue="0";
return;
}
else
{
int len1=str1.length();
int len2=str2.length();
string tempstr;
tempstr.append(str1,0,len2-1);
for(int i=len2-1;i<len1;i++)
{
tempstr=tempstr+str1[i];
tempstr.erase(0,tempstr.find_first_not_of('0'));
if(tempstr.empty())
tempstr="0";
for(char ch='9';ch>='0';ch--) //试商
{
string str,tmp;
str=str+ch;
tmp=mul(str2,str);
if(compare(tmp,tempstr)<=0) //试商成功
{
quotient=quotient+ch;
tempstr=sub(tempstr,tmp);
break;
}
}
}
residue=tempstr;
}
quotient.erase(0,quotient.find_first_not_of('0'));
if(quotient.empty()) quotient="0";
}
--------------------------------- 其 他 ---------------------------------------
阶乘问题(整型数组)
#include <bits/stdc++.h>
using namespace std;
int a[5000];
int factorial(int a[],int n) // 阶乘大于等于2(n>=2)
{
a[1]=1; //必须设为 1
int i,j;
int p=1,jw=0; //p代表位数,jw代表进位
for(i=2;i<=n;i++) //从 2开始
{
jw=0;
for(j=1;j<=p;j++) //高精度 *单精度
{
a[j]=a[j]*i+jw;
jw=a[j]/10;
a[j]=a[j]%10;
}
while(jw) //如果还有进位,处理进位
{
a[j]=jw%10;
jw/=10;
j++;
}
p=j-1;
}
return p; //返回位数
}
int main()
{
int sum=factorial(a,3);
for(int i=1;i<=sum;i++)
{
cout<<a[i];
}
return 0;
}
2n 问题(整型数组)
#include<bits/stdc++.h>
using namespace std;
int f[501],p,res[501],sav[1001];//乘法要开两倍长度
void result_1()
{
memset(sav,0,sizeof(sav));
for(register int i=1;i<=500;i+=1)
for(register int j=1;j<=500;j+=1)
sav[i+j-1]+=res[i]*f[j];//先计算每一位上的值(不进位)
for(register int i=1;i<=500;i+=1)
{
sav[i+1]+=sav[i]/10;//单独处理进位问题,不容易出错
sav[i]%=10;
}
memcpy(res,sav,sizeof(res)); //注意 sizeof的是第一次参数
}
void result_2()
{
memset(sav,0,sizeof(sav));
for(register int i=1;i<=500;i+=1)
for(register int j=1;j<=500;j+=1)
sav[i+j-1]+=f[i]*f[j]; //注意是 +=
for(register int i=1;i<=500;i+=1)
{
sav[i+1]+=sav[i]/10;
sav[i]%=10;
}
memcpy(f,sav,sizeof(f));
}
int main()
{
scanf("%d",&p);
int temp=p*log10(2)+1;
res[1]=1;
f[1]=2;//高精度赋初值
while(p!=0)//快速幂模板
{
if(p%2==1)result_1();
p/=2;
result_2();
}
for(register int i=temp;i>=1;i--)
printf("%d",res[i]);
return 0;
}
高精度乘低精度(string)
#include <bits/stdc++.h>
using namespace std;
int main()
{
string s, str = ""; //原高精度 后高精度
int n, jw = 0; //低精度 进位
cin >> s >> n;
int len = s.length();
for(int i = len-1; i >= 0;i--)
{
int temp = (s[i]-'0')* n + jw;
jw = temp/10;
temp %= 10;
str = char(temp + '0') + str;
}
cout << str;
return 0;
}
高精度除低精度(string)
#include <bits/stdc++.h>
using namespace std;
int main()
{
stringstream ss;
string s, tmp;
// t 是商(整型) temp 是余数
int a, t = 0, temp = 0;
cin >> s >> a;
int len = s.length();
t = (s[0] - '0') / a; //提取第一个字符
if ((t != 0 && len > 1) || len == 1) //之所以额外加 len,是因为后面的 for循环是从 i=1开始
ss << t;
temp = (s[0] - '0') % a;
for (int i = 1; i < len; i++) //从 i=1开始
{
t = (temp * 10 + s[i] - '0') / a;
ss << t;
temp = (temp * 10 + s[i] - '0') % a;
}
ss >> tmp;
cout << tmp <<" "<< temp; // tmp 是商 temp 是余数
return 0;
}
高精度乘低精度(vector)
#include <bits/stdc++.h>
using namespace std;
vector<int> mul(vector<int> &A, int b) //A为高精度数,b为低精度数
{
// C = A * b, A >= 0, b > 0
vector<int> C;
int t = 0;
for (int i = 0; i < A.size() || t; i ++ )
{
if (i < A.size()) t += A[i] * b; //用来解决最高位进位的问题
C.push_back(t % 10); //保留下最右边一位
t /= 10;
}
return C;
}
int main()
{
vector<int> A={1,2,3}; //高精度(原高精度是反着输入)
A=mul(A,2); //乘低精度
reverse(A.begin(),A.end());
for(vector<int>::iterator it=A.begin();it!=A.end();it++)
cout<<*it;
return 0;
}
output: 642
第 6 行 “||t” 与第 8 行的判断用来解决最高位进位的问题