从0-1背包开始理解非递归DP:洛谷P2871 [USACO07DEC]Charm Bracelet S

题目

洛谷P2871
Bessie has gone to the mall’s jewelry store and spies a charm bracelet. Of course, she’d like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a ‘desirability’ factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

分析

经典的0-1背包板子题
递归表达式 d p [ n ] [ w ] = m a x ( d p [ n − 1 ] [ w ] , d p [ n − 1 ] [ w − W [ n ] + D [ n ] dp[n][w] = max(dp[n-1][w], dp[n-1][w-W[n]+D[n] dp[n][w]=max(dp[n1][w],dp[n1][wW[n]+D[n],其中 n n n 表示进行第 n n n 件物品的选择, w w w 表示当前背包剩余容量, W [ n ] W[n] W[n] 表示第 n n n 件物品的重量, D [ n ] D[n] D[n] 表示第 n n n 件物品的价值。

递归方法

写个dp函数套递归表达式即可,记得使用记忆化搜索,否则复杂度炸。

非递归方法
二维数组
  • 二维数组的解法比较直观好理解,学习非递归dp可以从此入手。
  • 考察递归表达式中 m a x max max 的两项,发现 d p [ n ] [ w ] dp[n][w] dp[n][w] 只和其左下方的元素存在依赖关系(如图),因此只要保证对 n n n 从小到大遍历即可,至于 w w w 的遍历顺序,以及 n n n w w w 谁在内层循环谁在外层循环的问题,其实不会影响结果,读者可以自行推导。
// 二维解法,非常直观
#include <bits/stdc++.h>
using namespace std;

const int N_MAX = 4000;
const int W_D_MAX = 400;
const int M_MAX = 13000;

int N, M;
int W[N_MAX], D[N_MAX];
int dp[N_MAX][M_MAX];

int main()
{
    scanf("%d%d", &N, &M);
    for (int i = 1; i <= N; i++) {
        scanf("%d%d", &W[i], &D[i]);
    }
    // 递归式:dp[n][w] = max(dp[n-1][w], dp[n-1][w-W[n]]+D[n]);
    // 第一种遍历策略:外层遍历w,内层遍历n,从小到大,注意判断w的合法性
//    for (int w = 1; w <= M; w++) {
//        for (int n = 1; n <= N; n++) {
//            if (W[n] <= w) dp[n][w] = max(dp[n-1][w], dp[n-1][w-W[n]]+D[n]);
//            else dp[n][w] = dp[n-1][w];
//        }
//    }
    // 第二种遍历策略:外层遍历n,内层遍历w,从小到大,注意判断w的合法性
    for (int n = 1; n <= N; n++) {
        for (int w = M; w >= 1; w--) {  // 可以正着遍历也可以逆着遍历,因为对本层无依赖关系
            if (W[n] <= w) dp[n][w] = max(dp[n-1][w], dp[n-1][w-W[n]]+D[n]);
            else dp[n][w] = dp[n-1][w];
        }
    }
    printf("%d", dp[N][M]);
    return 0;
}
滚动数组优化的二维解法
  • 纯二维解法会MLE,因此需要优化。从上面的手画图可以看到,其实每个dp只对上一层n的数据有依赖关系,之前的层其实是冗余数据,即我只需要暂存上一层的数据即可,不难想到滚动数组。
  • 滚动数组思想比较easy,本质是模运算,直接看代码即可。
// 二维解法的优化:滚动数组——dp的二维信息往往生命周期并不长,比如这一题只有相邻的(之前的一行)有用
#include <bits/stdc++.h>
using namespace std;

const int N_MAX = 4000;
const int W_D_MAX = 400;
const int M_MAX = 13000;

int N, M;
int W[N_MAX], D[N_MAX];
int dp[2][M_MAX];   // 滚动数组,注意滚动的是外层遍历

int main()
{
    scanf("%d%d", &N, &M);
    for (int i = 1; i <= N; i++) {
        scanf("%d%d", &W[i], &D[i]);
    }
    for (int n = 1; n <= N; n++) {
        for (int w = 1; w <= M; w++) {
            if (W[n] <= w) dp[n%2][w] = max(dp[(n-1)%2][w], dp[(n-1)%2][w-W[n]]+D[n]);
            else dp[n%2][w] = dp[(n-1)%2][w];
        }
    }
    printf("%d", dp[N%2][M]);
    return 0;
}
一维数组方法
  • 进一步思考,发现其实也不需要多存一层数组,只要计算顺序合适,可以只用一维数组完成遍历
  • 这时候就需要留意 w w w 的依赖关系, w w w 依赖于上一层(n-1)比自己小的值,因此对 w w w 的遍历需要从大到小
#include <bits/stdc++.h>
using namespace std;

const int N_MAX = 4000;
const int W_D_MAX = 400;
const int M_MAX = 13000;

int N, M;
int W[N_MAX], D[N_MAX];
int dp[M_MAX];   // 滚动数组

int main()
{
    scanf("%d%d", &N, &M);
    for (int i = 1; i <= N; i++) {
        scanf("%d%d", &W[i], &D[i]);
    }
    for (int n = 1; n <= N; n++) {
        for (int w = M; w >= W[n]; w--) {   // 注意依赖关系:依赖上一层(n-1)的自己和上一层比自己小的,因此需要从大到小遍历
            dp[w] = max(dp[w], dp[w-W[n]]+D[n]);
        }
    }
    printf("%d", dp[M]);
    return 0;
}
题目描述 有一个长度为 $n$ 的书架,每本书有一个高度 $h_i$。现在你可以进行以下两种操作: - 将一本书放在书架的最左边或最右边,花费为 $c_1$。 - 将一本高度为 $h_i$ 的书放在一本高度为 $h_j$ 的书的上面,花费为 $c_2$。 现在你需要将书架上的书按照高度从小到大排列,求最小花费。 输入格式 第一行包含三个整数 $n,c_1,c_2$。 第二行包含 $n$ 个整数 $h_i$。 输出格式 输出一个整数,表示最小花费。 数据范围 $1\leq n\leq 200,1\leq c_1,c_2\leq 10^9,1\leq h_i\leq 10^9$ 输入样例 5 1 2 3 1 4 2 5 输出样例 6 算法1 (动态规划) $O(n^2)$ 首先考虑一个朴素的 dp,设 $f_{i,j}$ 表示前 $i$ 本书已经排好序,第 $i+1$ 本书放在第 $j$ 个位置的最小花费。 状态转移方程为: $$ f_{i,j}=\min\{f_{i-1,k}+c_1\}+\begin{cases}&\text{if }h_{i+1}>h_j\\c_2&\text{otherwise}\end{cases} $$ 其中 $k$ 取遍 $1\sim i$,表示将第 $i+1$ 本书放在第 $k$ 个位置。 时间复杂度 $O(n^3)$ C++ 代码 算法2 (单调队列优化) $O(n^2)$ 考虑优化上述 dp,发现状态转移方程中的 $\min$ 操作可以用单调队列优化,具体来说,我们维护一个单调递增的队列 $q$,其中 $q_i$ 表示第 $i$ 个位置的最小花费,那么对于状态 $f_{i,j}$,我们只需要找到 $q$ 中第一个大于等于 $f_{i-1,k}+c_1$ 的位置 $p$,然后 $f_{i,j}=q_p+\begin{cases}&\text{if }h_{i+1}>h_j\\c_2&\text{otherwise}\end{cases}$。 时间复杂度 $O(n^2)$ C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值