[机器学习]强化学习

本文档记录了《机器学习》第 16 章强化学习相关内容

任务与奖赏

形式化表示

  • 环境 E=X,A,P,R
  • 状态 xX
  • 动作 aA
  • 状态转移概率 P:X×A×X
  • 奖赏 R:X×A×X

    一些应用中奖赏函数可能仅与状态转移有关: R:X×X

“机器”与“环境”的界限

在环境中状态的转移、奖赏的返回是不受机器控制的,机器只能通过选择要执行的动作来影响环境,也只能通过观察转移后的状态和返回的奖赏来感知环境。

策略(Policy)

  • 确定性策略: π:XA
  • 随机性策略: π:X×A ,有 aπ(x,a)=1

奖赏

  • T 步累计奖赏: ?[1TTt=1rt]
  • γ 折扣累计奖赏: ?[+t=0γtrt+1]

K -摇臂赌博机

离散状态空间、离散动作空间

最大化单步奖赏

  • 需要知道每个动作带来的奖赏
  • 执行最大奖赏的动作

获知每个摇臂的期望奖赏

  • 仅探索

    将所有尝试机会平均分配给每个摇臂,以每个摇臂各自的平均吐币概率为奖赏期望的近似估计。

    可以很好地估计每个摇臂的奖赏,但由于探索的存在常常会失去选择最优摇臂的机会。

  • 仅利用

    选取目前最优(平均奖赏最大)的摇臂。很难对摇臂的期望奖赏有一个较好的估计,从而选不到最优摇臂。

ϵ -贪心

基于 ϵ 的概率对探索和利用进行折中

k 个摇臂第 n 次尝试之后平均奖赏:

Q0(k)=0

Qn(k)=1n((n1)×Qn1(k)+vn)

Qn(k)=Qn1(k)+1n(vnQn1(k))

如何确定 ϵ

  • 摇臂奖赏不确定性较大,则选用较大的 ϵ
  • 摇臂奖赏不确定性较小,则选用较小的 ϵ

Softmax

基于当前已知的摇臂平均奖赏对探索和利用进行折中

摇臂概率的分配

基于 Boltzmann 分布

P(k)=eQ(k)τΣKi=1Q(i)τ

有模型学习

假定任务对应的马尔科夫决策过程四元组 E=X,A,P,R 均已知,即机器已对环境进行了建模,能在机器内部模拟出与环境相同或近似的状况,从状态 x 执行动作 a 转移到状态 x 的状态转移概率 Paxx 以及奖赏 Raxx 均已知。

策略评估

  • 状态值函数 V() :指定状态上的累积奖赏

    • T 步累积奖赏

      VπT(x)=?π[1Tt=1Trt|x0=x]

      VπT(x)=aAπ(x,a)xXPaxx(1TRaxx+T1TVπT1(x
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值