命题逻辑<2>——真值演算

§ 2 \S 2 §2 命题逻辑的真值演算

逻辑等价

定义2.1 逻辑等价(等值)

若命题公式 A A A, B B B满足 A ↔ B A \leftrightarrow B AB为重言式,则称 A A A B B B是逻辑等价(等值)的,记为 A ⇔ B A \Leftrightarrow B AB

逻辑等价式公式

下面收录一些重要的逻辑等价式公式,用于逻辑等价式之间的相互转化。真命题记为 T T T,假命题记为 F F F

  1. 对合律 A ⇔ ¬ ¬ A A \Leftrightarrow \neg \neg A A¬¬A
  2. 幂等律 A ⇔ A ∨ A A \Leftrightarrow A \vee A AAA; A ⇔ A ∧ A A \Leftrightarrow A \wedge A AAA
  3. 交换律 A ∨ B ⇔ B ∨ A A \vee B \Leftrightarrow B\vee A ABBA; A ∧ B ⇔ B ∧ A A \wedge B \Leftrightarrow B\wedge A ABBA
  4. 结合律 ( A ∨ B ) ∨ C ⇔ A ∨ ( B ∨ C ) \left ( A \vee B \right )\vee C \Leftrightarrow A\vee \left ( B\vee C \right ) (AB)CA(BC); ( A ∧ B ) ∧ C ⇔ A ∧ ( B ∧ C ) \left ( A \wedge B \right )\wedge C \Leftrightarrow A\wedge \left ( B\wedge C \right ) (AB)CA(BC)
  5. 分配律 A ∨ ( B ∧ C ) ⇔ ( A ∨ B ) ∧ ( A ∨ C ) A\vee \left ( B\wedge C \right ) \Leftrightarrow \left ( A\vee B \right )\wedge \left ( A\vee C \right ) A(BC)(AB)(AC); A ∧ ( B ∨ C ) ⇔ ( A ∧ B ) ∨ ( A ∧ C ) A\wedge \left ( B\vee C \right )\Leftrightarrow \left ( A\wedge B \right )\vee \left ( A\wedge C \right ) A(BC)(AB)(AC)
  6. 反演律(德摩根律) ¬ ( A ∨ B ) ⇔ ¬ A ∧ ¬ B \neg \left ( A\vee B \right )\Leftrightarrow \neg A\wedge \neg B ¬(AB)¬A¬B; ¬ ( A ∧ B ) ⇔ ¬ A ∨ ¬ B \neg \left ( A\wedge B \right )\Leftrightarrow \neg A\vee \neg B ¬(AB)¬A¬B
  7. 吸收律 A ∨ ( A ∧ B ) ⇔ A A\vee \left ( A\wedge B \right ) \Leftrightarrow A A(AB)A; A ∧ ( A ∨ B ) ⇔ A A\wedge \left ( A\vee B \right )\Leftrightarrow A A(AB)A
  8. 恒等律 A ∧ T ⇔ A A \wedge T\Leftrightarrow A ATA; A ∨ F ⇔ A A\vee F\Leftrightarrow A AFA
  9. 同一律 A ∧ F ⇔ F A\wedge F\Leftrightarrow F AFF; A ∨ T ⇔ T A\vee T\Leftrightarrow T ATT
  10. 排中律 A ∨ ¬ A ⇔ T A\vee \neg A\Leftrightarrow T A¬AT
  11. 矛盾律 A ∧ ¬ A ⇔ F A\wedge \neg A\Leftrightarrow F A¬AF
  12. 蕴含等价式 A → B ⇔ ¬ A ∨ B A\to B\Leftrightarrow \neg A\vee B AB¬AB
  13. 双向蕴含等价式 ( A ↔ B ) ⇔ ( A → B ) ∧ ( B → A ) \left ( A\leftrightarrow B \right )\Leftrightarrow \left ( A\to B \right )\wedge \left ( B\to A \right ) (AB)(AB)(BA)
  14. 输出律 A ∧ B → C ⇔ ( A → B ) → C A\wedge B\to C\Leftrightarrow \left ( A\to B \right )\to C ABC(AB)C
  15. 假言异位 A → B ⇔ ¬ B → ¬ A A \to B\Leftrightarrow \neg B\to \neg A AB¬B¬A
  16. 归谬律 ( A → B ) ∧ ( A → ¬ B ) ⇔ ¬ A \left ( A\to B \right )\wedge \left ( A\to \neg B \right )\Leftrightarrow \neg A (AB)(A¬B)¬A

定义2.2 逻辑蕴涵

若命题公式 A A A, B B B满足 A → B A \to B AB为重言式,则称 A A A逻辑蕴含 B B B,记为 A ⊨ B A \models B AB。推广形式为 Γ ⊨ B \Gamma \models B ΓB, Γ \Gamma Γ可以代表公式集合,若一组指派弄真 Γ \Gamma Γ中每个公式的合取式,则这组指派弄真公式 B B B,即 Γ \Gamma Γ中公式逻辑蕴涵 B B B。当 Γ = { A } \Gamma =\left \{ A \right \} Γ={A}时, A ⊨ B A \models B AB,当 Γ = ∅ \Gamma =\varnothing Γ=时, B B B为重言式,记为 ⊨ B \models B B

逻辑蕴涵式公式

下面收录一些重要的逻辑蕴含式公式,用于逻辑蕴含式之间的相互转化。

  1. A ⊨ A ∨ B A\models A\vee B AAB; B ⊨ A ∧ B B\models A\wedge B BAB
  2. A ∧ B ⊨ A A\wedge B\models A ABA; A ∨ B ⊨ B A\vee B\models B ABB
  3. A ∧ ( A → B ) ⊨ B A\wedge \left ( A\to B \right ) \models B A(AB)B; ¬ B ∧ ( A → B ) ⊨ ¬ A \neg B\wedge \left ( A\to B \right )\models \neg A ¬B(AB)¬A
  4. ¬ A ∧ ( A ∨ B ) ⊨ B ; ¬ B ∧ ( A ∨ B ) ⊨ A \neg A\wedge \left ( A\vee B \right )\models B;\neg B\wedge \left ( A\vee B \right )\models A ¬A(AB)B;¬B(AB)A
  5. ( A → B ) ∧ ( B → C ) ⊨ A → C \left ( A\to B \right ) \wedge \left ( B\to C \right ) \models A\to C (AB)(BC)AC
  6. ( A → B ) ∧ ( C → D ) ⊨ ( A → C ) → ( B → D ) \left ( A\to B \right ) \wedge \left ( C\to D \right ) \models \left ( A\to C \right )\to \left ( B\to D \right ) (AB)(CD)(AC)(BD)
  7. ( A ↔ B ) ∧ ( B ↔ C ) ⊨ A ↔ C \left ( A\leftrightarrow B \right )\wedge \left ( B\leftrightarrow C \right )\models A \leftrightarrow C (AB)(BC)AC

定理2.1

逻辑等价满足自反性,对称性,传递性;逻辑蕴涵满足自反性,传递性,逆反律,以及等式两边可以用等价式代换。

  1. A ⇔ B A\Leftrightarrow B AB,当且仅当 B ⇔ A B\Leftrightarrow A BA
  2. A ⇔ B A\Leftrightarrow B AB, B ⇔ C B\Leftrightarrow C BC,则 A ⇔ C A\Leftrightarrow C AC
  3. A ⊨ B A\models B AB, B ⊨ C B\models C BC,则 A ⊨ C A\models C AC
  4. A ⊨ B A\models B AB当且仅当 ¬ B ⊨ ¬ A \neg B\models \neg A ¬B¬A
  5. A ⇔ A ′ A\Leftrightarrow A^{\prime } AA, B ⇔ B ′ B\Leftrightarrow B^{\prime } BB, A ⊨ B A\models B AB,则 A ′ ⊨ B ′ A^{\prime }\models B^{\prime } AB

演算规则

定理2.2 代入原理

A A A永真, p p p为命题变元,则 A ( B / p ) A \left ( B / p \right ) A(B/p)代表将 A A A中所有出现 p p p的位置替换为 B B B,称为 A A A的一个代入实例,则 A ( B / p ) A \left ( B / p \right ) A(B/p)也永真。

定理2.3 替换原理

设命题公式 A A A中截取的子公式 C C C满足 C ⇔ D C \Leftrightarrow D CD,若将 A A A中子公式 C C C的某些出现位置替换为 D D D,则替换后的公式 B B B满足 A ⇔ B A \Leftrightarrow B AB

定义2.3 对偶式

设命题公式 A A A中只使用联结词集合 { ¬ , ∨ , ∧ } \left \{ \neg ,\vee ,\wedge \right \} {¬,,},则运用以下替换规则:

  1. ∨ / ∧ \vee / \wedge /
  2. ∧ / ∨ \wedge / \vee /
  3. T / F T / F T/F
  4. F / T F / T F/T

可以得到 A A A的对偶 A ∗ A^{\ast } A

定理2.4 对偶原理

对偶式相关的两个结论:
(1)
设命题公式 A A A中只使用联结词集合 { ¬ , ∨ , ∧ } \left \{ \neg ,\vee ,\wedge \right \} {¬,,},且有命题变元 { p 1 , p 2 , … , p i , … , p n ∣ i , n ∈ N + , 1 ≤ i ≤ n } \left \{ p_{1},p_{2},\dots, p_{i},\dots , p_{n} \mid i,n\in \mathbb{N^{+},1\le i \le n } \right \} {p1,p2,,pi,,pni,nN+,1in},则 A ⇔ ¬ A ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) A \Leftrightarrow \neg A^{\ast } \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) A¬A(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)
(2)
设命题公式 B B B中也只使用联结词集合 { ¬ , ∨ , ∧ } \left \{ \neg ,\vee ,\wedge \right \} {¬,,},且有命题变元 { p 1 , p 2 , … , p i , … , p n ∣ i , n ∈ N + , 1 ≤ i ≤ n } \left \{ p_{1},p_{2},\dots, p_{i},\dots , p_{n} \mid i,n\in \mathbb{N^{+},1\le i \le n } \right \} {p1,p2,,pi,,pni,nN+,1in}, A A A, B B B均满足 A ⊨ B A\models B AB,则满足 B ∗ ⊨ A ∗ B^{\ast } \models A^{\ast } BA,进而 A ⇔ B A\Leftrightarrow B AB能推出 A ∗ ⇔ B ∗ A^{\ast } \Leftrightarrow B^{\ast } AB B ∗ ⊨ A ∗ B^{\ast } \models A^{\ast } BA, A ∗ ⇔ B ∗ A^{\ast } \Leftrightarrow B^{\ast } AB称为 A ⊨ B A\models B AB, A ⇔ B A\Leftrightarrow B AB的对偶式。
证明(1)
对(1)的证明采用结构归纳法,对公式 A A A中的除括号外符号总数 k k k进行归纳,
Step 1
k = 1 k=1 k=1,设公式 A A A中只有命题变元 p 1 , p 2 , … , p i , … , p n p_{1},p_{2},\dots, p_{i},\dots , p_{n} p1,p2,,pi,,pn或真命题 T T T,假命题 F F F,对以下情况分类讨论:
2. A ⇔ p i A\Leftrightarrow p_{i} Api
¬ A ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) ⇔ ¬ ¬ p i ⇔ p i \begin{array}{l} & \neg A^{\ast } \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) \\ \Leftrightarrow & \neg \neg p_{i} \\ \Leftrightarrow & p_{i} \end{array} ¬A(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)¬¬pipi
3. A ⇔ T A\Leftrightarrow T AT
¬ A ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) ⇔ ¬ F ⇔ T \begin{array}{l} &\neg A^{\ast } \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) \\ \Leftrightarrow & \neg F \\ \Leftrightarrow & T \end{array} ¬A(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)¬FT
4. A ⇔ F A\Leftrightarrow F AF
¬ A ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) ⇔ ¬ T ⇔ F \begin{array}{l} &\neg A^{\ast } \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) \\ \Leftrightarrow & \neg T \\ \Leftrightarrow & F \end{array} ¬A(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)¬TF

结论是对 k = 1 k=1 k=1(1)均成立。

Step 2
设(1)对所有除括号外符号总数小于 k − 1 k-1 k1的情形都成立,下证除括号外符号总数等于 k k k时(1)也成立。
因为命题公式 A A A中只使用联结词集合 { ¬ , ∨ , ∧ } \left \{ \neg ,\vee ,\wedge \right \} {¬,,},所以将 A A A化为以下可能的子公式 A 1 A_{1} A1, A 2 A_{2} A2的复合:

  1. A ⇔ ¬ A 1 A\Leftrightarrow \neg A_{1} A¬A1
    因为 ∣ A 1 ∣ < k \left | A_{1} \right | <k A1<k,所以对 A 1 A_{1} A1使用归纳假设 A 1 ⇔ ¬ A 1 ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) A_{1} \Leftrightarrow \neg A^{\ast }_{1} \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) A1¬A1(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn);
    又有 A ∗ ⇔ ¬ A 1 ∗ A^{\ast } \Leftrightarrow \neg A_{1}^{\ast } A¬A1,
    A ⇔ ¬ A 1 ⇔ ¬ ( ¬ A 1 ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) ) ( 归纳假设 ) ⇔ ¬ ( ( ¬ A 1 ) ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) ) ⇔ ¬ A ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) \begin{array}{l} &A & \\ \Leftrightarrow& \neg A_{1} & \\ \Leftrightarrow& \neg \left ( \neg A^{\ast }_{1} \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) \right ) & (归纳假设) \\ \Leftrightarrow & \neg \left ( \left ( \neg A_{1} \right )^{\ast } \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) \right ) & \\ \Leftrightarrow & \neg A^{\ast } \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) \end{array} A¬A1¬(¬A1(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn))¬((¬A1)(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn))¬A(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)(归纳假设)
  2. A ⇔ A 1 ∨ A 2 A\Leftrightarrow A_{1} \vee A_{2} AA1A2
    因为 ∣ A 1 ∣ < k \left | A_{1} \right | <k A1<k, ∣ A 2 ∣ < k \left | A_{2} \right | <k A2<k,所以对 A 1 A_{1} A1, A 2 A_{2} A2使用归纳假设 A 1 ⇔ ¬ A 1 ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) A_{1} \Leftrightarrow \neg A^{\ast }_{1} \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) A1¬A1(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn), A 2 ⇔ ¬ A 2 ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) A_{2} \Leftrightarrow \neg A^{\ast }_{2} \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) A2¬A2(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn);
    又有 A ∗ ⇔ A 1 ∗ ∧ A 2 ∗ A^{\ast } \Leftrightarrow A_{1}^{\ast }\wedge A_{2}^{\ast } AA1A2,
    A ⇔ A 1 ∨ A 2 ⇔ ( ¬ A 1 ∗ ∨ ¬ A 2 ∗ ) ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) ( 归纳假设 ) ⇔ ¬ ( A 1 ∗ ∧ A 2 ∗ ) ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) ( 反演律 ) ⇔ ¬ A ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) \begin{array}{l} &A & \\ \Leftrightarrow & A_{1} \vee A_{2} & \\ \Leftrightarrow & \left ( \neg A^{\ast }_{1} \vee \neg A^{\ast }_{2} \right ) \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) & (归纳假设) \\ \Leftrightarrow & \neg \left ( A^{\ast }_{1} \wedge A^{\ast }_{2} \right ) \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) & (反演律) \\ \Leftrightarrow & \neg A^{\ast } \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) & \end{array} AA1A2(¬A1¬A2)(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)¬(A1A2)(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)¬A(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)(归纳假设)(反演律)
  3. A ⇔ A 1 ∧ A 2 A\Leftrightarrow A_{1} \wedge A_{2} AA1A2
    因为 ∣ A 1 ∣ < k \left | A_{1} \right | <k A1<k, ∣ A 2 ∣ < k \left | A_{2} \right | <k A2<k,所以对 A 1 A_{1} A1, A 2 A_{2} A2使用归纳假设 A 1 ⇔ ¬ A 1 ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) A_{1} \Leftrightarrow \neg A^{\ast }_{1} \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) A1¬A1(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn), A 2 ⇔ ¬ A 2 ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) A_{2} \Leftrightarrow \neg A^{\ast }_{2} \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) A2¬A2(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn);
    又有 A ∗ ⇔ A 1 ∗ ∨ A 2 ∗ A^{\ast } \Leftrightarrow A_{1}^{\ast }\vee A_{2}^{\ast } AA1A2,
    A ⇔ A 1 ∧ A 2 ⇔ ( ¬ A 1 ∗ ∧ ¬ A 2 ∗ ) ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) ( 归纳假设 ) ⇔ ¬ ( A 1 ∗ ∨ A 2 ∗ ) ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) ( 反演律 ) ⇔ ¬ A ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) \begin{array}{l} &A & \\ \Leftrightarrow & A_{1} \wedge A_{2}& \\ \Leftrightarrow & \left ( \neg A^{\ast }_{1} \wedge \neg A^{\ast }_{2} \right ) \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) & (归纳假设)\\ \Leftrightarrow & \neg \left ( A^{\ast }_{1} \vee A^{\ast }_{2} \right ) \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) & (反演律) \\ \Leftrightarrow & \neg A^{\ast } \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) & \end{array} AA1A2(¬A1¬A2)(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)¬(A1A2)(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)¬A(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)(归纳假设)(反演律)
    结论是对所有的 k k k(1)均成立。

证明(2)
A ⇔ ¬ A ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) B ⇔ ¬ B ∗ ( ¬ p 1 / p 1 , ¬ p 2 / p 2 , … , ¬ p i / p i , … , ¬ p n / p n ) ( 定理 2.4.1 对偶原理 ) \begin{array}{l} A \Leftrightarrow \neg A^{\ast } \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) \\ B \Leftrightarrow \neg B^{\ast } \left (\neg p_{1}/p_{1} ,\neg p_{2}/p_{2},\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right )&(定理2.4.1对偶原理)\\ \end{array} A¬A(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)B¬B(¬p1/p1,¬p2/p2,,¬pi/pi,,¬pn/pn)(定理2.4.1对偶原理)
A ⊨ B A\models B AB可化为如下形式:
¬ A ∗ ( ¬ p 1 / p 1 , … , ¬ p i / p i , … , ¬ p n / p n ) ⊨ ¬ B ∗ ( ¬ p 1 / p 1 , … , ¬ p i / p i , … , ¬ p n / p n ) ( 定理 2.1.5 ) B ∗ ( ¬ p 1 / p 1 , … , ¬ p i / p i , … , ¬ p n / p n ) ⊨ A ∗ ( ¬ p 1 / p 1 , … , ¬ p i / p i , … , ¬ p n / p n ) ( 逆反律 ) B ∗ ( ¬ p 1 / p 1 , … , ¬ p i / p i , … , ¬ p n / p n ) ( ¬ p 1 / p 1 , … , ¬ p i / p i , … , ¬ p n / p n ) ⊨ A ∗ ( ¬ p 1 / p 1 , … , ¬ p i / p i , … , ¬ p n / p n ) ( ¬ p 1 / p 1 , … , ¬ p i / p i , … , ¬ p n / p n ) ( 代入原理 ) B ∗ ( ¬ ¬ p 1 / p 1 , … , ¬ ¬ p i / p i , … , ¬ ¬ p n / p n ) ⊨ A ∗ ( ¬ ¬ p 1 / p 1 , … , ¬ ¬ p i / p i , … , ¬ ¬ p n / p n ) B ∗ ( p 1 / p 1 , … , p i / p i , … , p n / p n ) ⊨ A ∗ ( p 1 / p 1 , … , p i / p i , … , p n / p n ) ( 双重否定律 ) B ∗ ⊨ A ∗ \begin{array}{l} \neg A^{\ast } \left (\neg p_{1}/p_{1} ,\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) \models \neg B^{\ast } \left (\neg p_{1}/p_{1} ,\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) & (定理2.1.5) \\ B^{\ast } \left (\neg p_{1}/p_{1} ,\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) \models A^{\ast } \left (\neg p_{1}/p_{1} ,\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) & (逆反律) \\ B^{\ast } \left (\neg p_{1}/p_{1} ,\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right )\left (\neg p_{1}/p_{1} ,\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) \\ \models A^{\ast } \left (\neg p_{1}/p_{1} ,\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right )\left (\neg p_{1}/p_{1} ,\dots, \neg p_{i}/p_{i},\dots ,\neg p_{n}/p_{n} \right ) & (代入原理) \\ B^{\ast } \left (\neg \neg p_{1}/p_{1} ,\dots, \neg \neg p_{i}/p_{i},\dots ,\neg \neg p_{n}/p_{n} \right ) \models A^{\ast } \left (\neg \neg p_{1}/p_{1} ,\dots, \neg \neg p_{i}/p_{i},\dots ,\neg \neg p_{n}/p_{n} \right ) \\ B^{\ast } \left ( p_{1}/p_{1} , \dots,p_{i}/p_{i},\dots ,p_{n}/p_{n} \right ) \models A^{\ast } \left ( p_{1}/p_{1} , \dots, p_{i}/p_{i},\dots , p_{n}/p_{n} \right ) & (双重否定律)\\ B^{\ast } \models A^{\ast } \end{array} ¬A(¬p1/p1,,¬pi/pi,,¬pn/pn)¬B(¬p1/p1,,¬pi/pi,,¬pn/pn)B(¬p1/p1,,¬pi/pi,,¬pn/pn)A(¬p1/p1,,¬pi/pi,,¬pn/pn)B(¬p1/p1,,¬pi/pi,,¬pn/pn)(¬p1/p1,,¬pi/pi,,¬pn/pn)A(¬p1/p1,,¬pi/pi,,¬pn/pn)(¬p1/p1,,¬pi/pi,,¬pn/pn)B(¬¬p1/p1,,¬¬pi/pi,,¬¬pn/pn)A(¬¬p1/p1,,¬¬pi/pi,,¬¬pn/pn)B(p1/p1,,pi/pi,,pn/pn)A(p1/p1,,pi/pi,,pn/pn)BA(定理2.1.5)(逆反律)(代入原理)(双重否定律)
A ⇔ B A\Leftrightarrow B AB成立时,同理可得 A ∗ ⊨ B ∗ A^{\ast } \models B^{\ast } AB也成立,所以 A ∗ ⇔ B ∗ A^{\ast } \Leftrightarrow B^{\ast } AB也成立。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值