UDT算法在数据集OTB评估过程

参考

OTB使用:https://www.cnblogs.com/eraserNut/p/8401320.html
Visual Tracker Benchmark v1.0全过程配置方法,测试跟踪序列OTB50/OTB100

目标跟踪vot2016benchmark使用教程
OTB评估指标
目标跟踪的评价指标(OTB与VOT)

测试准备

环境

windows10, Matlab2017a,Cuda10.1, VS 2015pro, matconvnet1.0-beat25
Unsupervised Deep Tracking
论文
MatConvNet 安装
UDT Github项目地址
OTB50 官网下载 网盘下载
track_benchmark 下载

tracker_benchmark 文件与说明

在这里插入图片描述

(1) main_running.m是用来在测试集上跑跟踪代码的,跑出的结果存在results文件夹中;
(2) perfPlot.m用来把测试结果画出图来,就是benchmark网上的图的效果,如果你第一次下载tracker_benchmark_v1.0的测试代码,可以先运行perfPlot.m就可以直接画出漂亮的图。只不过这些图是已有的跟踪算法和测试结果,作者都保存在results文件夹里面了;
(3) drawResultBB.m用于画每个帧上不同跟踪器的边界框的主函数。
(4) anno注释文件(边界框和属性)的目录;
(5) initOmit 包含由于遮挡或目标超出视野而被省略的用于跟踪初始化的帧的注释 的目录;
(6) rstEval 包含了很多用于计算跟踪性能或者画出结果的脚本的目录;
(7) trackers 包含了很多跟踪器代码的目录,里面有20多个跟踪代码,有matlab版,也有c++版;
(8) tmp 用来存放临时结果或者日志文件的目录;
(9) results包含了所有已有跟踪算法的测试结果;
(10) util 包含主函数里用到的脚本的目录(主要就是这个文件夹里的文件需要改)。
作者:劲草浅躬行
原文:https://blog.csdn.net/lcb_coconut/article/details/76512707

UDT检测OTB50数据集

utils/configTrackers.m 与 utils/configSeqs.m分别保存跟踪器与检测序列信息。在configTrackers.m 中增加UDT跟踪器条目,

trackersUDT={ struct('name','UDT','namePaper','UDT')};
trackers = [trackersUDT];%要使用的跟踪器放这,这里只计算UDT算法的跟踪结果

修改configSeqs.m中数据路径,注意路径定位至’img’,反斜杠必须有。
在这里插入图片描述
main_running.m 中修改vlfeat 路径。

addpath(('D:\Document\20190415-0422\vlfeat-0.9.20-bin\vlfeat-0.9.20\toolbox'));%添加vlfeat工具路径

main_running.m 中修改评估指标,OPE,SRE,TRE参考博客SRE要检测空间鲁棒性,初始框要经变换后再跟踪。考虑算法对初始框的鲁棒性

evalType='SRE'; %'OPE','SRE','TRE'%评估指标

引入UDT算法

在‘tracker_benchmark/trackers" 目录下新建UDT目录,将下载的UDT算法目录"tracker/runfiles"下所有文件复制至UDT目录中。
runfiles 如下
在这里插入图片描述
复制后如下

在这里插入图片描述
修改run_UDT.m 。算法入口的方法命名必须为“run_xxx.m"格式,xxx为configTracker中的算法名字,


function res = run_UDT(subS, rp, bSaveImage, varargin)%函数修改为

function res = run_UDT(subS, rp, bSaveImage);
subS:图片序列
rp:检测结果图片的保存路径
bSaveImage:是否保存检测后的图片
后面两参数没用到,因为不需要保存图片
%param = vl_argparse(param, varargin) ;这行注释掉

修改后运行main_running.m文件
输出
在这里插入图片描述

相关错误

在这里插入图片描述
49行代码等式左边删除即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值