1、完成Web Demo部署
根据学习文档https://github.com/SmartFlowAI/Llama3-Tutorial
配置环境下载依赖,再运行web_demo.py
更改端口号在浏览器打开即可
2、 使用 XTuner 完成小助手认知微调
接上节环境已配置好,把仓库克隆过来
在gdata.py文件里把可以更改名字为“机智流”
再激活llama3的conda环境,并运行学习文档中脚本
在personal_assistant.json文件里找到生成结果
然后使用XTuner进行微调
1)pip验证XTuner被正确安装
2)再复制路径进行微调
使用上节课中的streamlit可以和llama3对话(输入参数是微调后的路径)
3、使用 LMDeploy 部署 Llama 3 模型
安装lmdeploy环境并激活
使用LMDeploy Chat CLI工具(直接粘贴文档命令到终端)
进行W4A16量化,再用Chat功能运行量化后的模型
通过文档命令启动API服务器,推理Meta-Llama-3-8B-Instruct模型
将端口号替换成自己的
新建一个命令行客户端与模型对话
新建VS终端并激活环境
使用Gradio作为前端,启动网页客户端,打开浏览器就可以和模型对话了