Llama3学习

1、完成Web Demo部署

根据学习文档https://github.com/SmartFlowAI/Llama3-Tutorial

配置环境下载依赖,再运行web_demo.py

4a0a1f244d6c4797a990fb9a65277af5.png

29030f4bb6684106bf8155b9d3aca6b6.png 

更改端口号在浏览器打开即可

744c4999c14849f89568d77ff6ae3712.png

488131fea3d54a698cbd95a351669187.png 

2、 使用 XTuner 完成小助手认知微调

接上节环境已配置好,把仓库克隆过来

4897581cc9474b50a282e2df8217df41.png

在gdata.py文件里把可以更改名字为“机智流”

再激活llama3的conda环境,并运行学习文档中脚本

在personal_assistant.json文件里找到生成结果

61a17a5be5914c938bbd240032960c9c.png 

然后使用XTuner进行微调

1)pip验证XTuner被正确安装

2)再复制路径进行微调

使用上节课中的streamlit可以和llama3对话(输入参数是微调后的路径)

e5c83445928044c28db82d6b8ac6cc25.png

3、使用 LMDeploy 部署 Llama 3 模型

安装lmdeploy环境并激活

2cf8c89964d04ea583a139c4a768744a.png

 使用LMDeploy Chat CLI工具(直接粘贴文档命令到终端)

aa3be0116a634f98a9f2ce690427a6fb.png

进行W4A16量化,再用Chat功能运行量化后的模型

cd1f426e194744c581e26e5ed56e9d3f.png 

通过文档命令启动API服务器,推理Meta-Llama-3-8B-Instruct模型909e95bb9791412e86079fc523b81955.png

将端口号替换成自己的

新建一个命令行客户端与模型对话

ceaa453cabd14f8fa514905ccd2e04e9.png 

新建VS终端并激活环境

c2bba6cc70ed40c6b7d9df0d0fbf0be6.png 

使用Gradio作为前端,启动网页客户端,打开浏览器就可以和模型对话了

7c4b7d6b710b473f84a9499ce6ff27d4.png

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值