An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Output
Sample Input
Sample Output
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
分析:
这题典型的拓扑排序,但是有点变化。
题目样例的三种输出分别是:
1. 在第x个关系中可以唯一的确定排序,并输出。
2. 在第x个关系中发现了有回环(Inconsisitency矛盾)
3.全部关系都没有发现上面两种情况,输出第3种.
贪心的做法:
1. 找到所有入度为0的点, 加入队列Q
2.取出队列Q的一个点,把以这个点为起点,所有它的终点的入度都减1. 如果这个过程中发现经过减1后入度变为0的,把这个点加入队列Q。
3.重复步骤2,直到Q为空。
这个过程中,如果同时有多个点的入度为0,说明不能唯一确定关系。
如果结束之后,所得到的经过排序的点少于点的总数,那么说明有回环
刚开始时没看懂样例输入输出,后来懂了又在确定唯一关系时出问题(我是用输入的不同字母的个数是否达到n来判断是否达到唯一确定的关系);
#include<cstdio> #include<cstring> #include<vector> #include<queue> using namespace std; const int N = 105; int n,m,in[N],temp[N],Sort[N],t,pos, num,fa[30][30]; char X, O, Y; vector<int>G[N]; void init(){ memset(in, 0, sizeof(in)); for(int i=0; i<=n; ++i){ G[i].clear(); } } int topoSort(){ queue<int>q; for(int i=0; i<n; ++i)if(in[i]==0){ q.push(i); } pos=0; bool unSure=false; while(!q.empty()){ if(q.size()>1) unSure=true; int t=q.front(); q.pop(); Sort[pos++]=t; for(int i=0; i<G[t].size(); ++i){ if(--in[G[t][i]]==0) q.push(G[t][i]); } } if(pos<n) return 1; if(unSure) return 2; return 3; } int main(){ int x,y,i,flag,ok,stop; while(~scanf("%d%d%*c",&n,&m)){ if(!n||!m)break;memset(fa,0,sizeof(fa)); init(); flag=2; ok=false; for(i=1; i<=m; ++i){ scanf("%c%c%c%*c", &X,&O,&Y); if(ok||fa[X-'A'][Y-'A']) continue; // 如果已经判断了有回环或者可唯一排序,不处理但是要继续读 x=X-'A', y=Y-'A';fa[x][y]=1; G[y].push_back(x); ++in[x]; // 拷贝一个副本,等下用来还原in数组 memcpy(temp, in, sizeof(in)); flag=topoSort(); memcpy(in, temp, sizeof(temp)); if(flag!=2){ stop=i; ok=true; } } if(flag==3){ printf("Sorted sequence determined after %d relations: ", stop); for(int i=pos-1; i>=0; --i) printf("%c",Sort[i]+'A'); printf(".\n"); } else if(flag==1){ printf("Inconsistency found after %d relations.\n",stop); } else{ printf("Sorted sequence cannot be determined.\n"); } } return 0; }