在一个平面内给定n个点,任意三个点不在同一条直线上,用这些点可以构成多少个平行四边形?一个点可以同时属于多个平行四边形。
Input多组数据(<=10),处理到EOF。
每组数据第一行一个整数n(4<=n<=500)。接下来n行每行两个整数xi,yi(0<=xi,yi<=1e9),表示每个点的坐标。
每组数据输出一个整数,表示用这些点能构成多少个平行四边形。
4 0 1 1 0 1 1 2 0
1
/*Sherlock and Watson and Adler*/
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<queue>
#include<stack>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<cmath>
#include<complex>
#include<string>
#include<algorithm>
#include<iostream>
#define exp 1e-10
using namespace std;
const int N = 505;
const int M = 40;
const int inf = 100000000;
const int mod = 2009;
struct node
{
int x,y;
}s[N],d[N*N];
bool cmp(node x,node y)
{
if(x.x!=y.x)
return x.x<y.x;
return x.y<y.y;
}
int main()
{
int n,i,j,p,c;
while(~scanf("%d",&n))
{
p=c=0;
for(i=0;i<n;i++)
scanf("%d%d",&s[i].x,&s[i].y);
for(i=0;i<n;i++)
for(j=i+1;j<n;j++)
{
d[p].x=s[i].x+s[j].x;
d[p].y=s[i].y+s[j].y;
p++;
}
sort(d,d+p,cmp);
for(i=0,j=1;i<p&&j<p;i=j,j++)
{
while(d[j].x==d[i].x&&d[j].y==d[i].y)//多条边的中点相交于(i.x,i.y),任意取两条边,都是平行四边形的对角线,运用组合公
j++;//式求平行四边形的数量;
c+=(j-i-1)*(j-i)/2;
}
printf("%d\n",c);
}
return 0;
}
刚开始时就只想到从点集中选四个点,看能不能组成平行四边形,但根本无法下手。后来虽然想到了对角线,也都没有想到把任意两点的中点求出来然后存储在新的数组里,在
在这个数组里把每一条边拿来比较,得出答案。