Cityscapes数据集使用与结果测试评估

本文介绍Cityscapes数据集,包括官网下载数据、预处理和评估代码,数据分为训练集、验证集和测试集。训练准备时可选择感兴趣类别,通过特定代码生成训练用标签图。测试训练结果可通过代码计算IoU,还给出修改后可直接输入特定标签图及评估不同分辨率预测图像的程序下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据集概览

1、数据在官网注册下载,https://www.cityscapes-dataset.com/  ,官网也可以在benchmarks中查看当前流行的神经网络速度和准确率等指标。

2、数据预处理和评估结果代码下载:https://github.com/mcordts/cityscapesScripts

       原图存放在leftImg8bit文件夹中,精细标注的数据存放在gtFine (gt : ground truth) 文件夹中 。其中,训练集共2975张(train),验证集500张(val),都有相应的精细标注的标签。但是,测试集(test)只给了原图,没有给标签,官方用于线上评估大家提交的代码(防止有人用test集训练刷指标)。因此,实际使用中可以用validation集做test使用。

      标签文件中每张图像对应4个文件:

  • _gtFine_polygons.json存储的标注的第一手数据,即类("label": "sky","building","sidewalk",等)及其在图像中对应的区域(由多边形"polygon"顶点在图像中的像素坐标给出的封闭区域);
  • _gtFine_labelIds.png的值是0-33,不同的值代表不同的类,值和类的对应关系在代码中cityscapesscripts/helpers/labels.py中定义;
  • _gtFine_instaceIds.png是实例分割的结果,即对同一类中的不同个体进行区分;
  • _gtFine_color.png是为了可视化,不同类别与色彩的对应关系也在labels.py文件中给出。

二、训练准备

     训练使用的label的图片应该是值为0~n的单通道的灰度图,其中n表示类别。

     cityscapesScripts/helpers/labels.py文件中定义了不同类别和Id值的对应方式、class和category的对应关系等。训练时可以选择自己感兴趣的类别进行训练,如labels.py中给的trainId的19类的例子,不感兴趣的类别trainId设为255,ignoreInEval改为True。使用训练数据的两种方法:

  1. 运行cityscapesscripts/preparation/createTrainIdLabelImgs.py代码,会调用labels.py中的类别定义,从json文件中生成19类的用于训练的_gtFine_labelTrainIds.png,进而进行训练。
  2. 使用_gtFine_labelIds.png的数据,在load时通过代码将不需要的类对应的值设为255(ignore),并建立class_map将训练使用的类依次映射到0~18的连续值。

 

三、测试训练结果

    通过cityscapesscritps/evaluation/evalPixelLevelSemanticLabeling.py可以比较groudtruth和神经网络预测的结果图像,计算出classes IoU和Categories IoU. 

    但是这个代码要求输入的是labelIds,所以要求把根据TrainIds预测的图像转化为34类的Id,不方便。我修改的代码可以直接输入_gtFine_labelTrainIds.png和按照trainIds生成的图片;另外由于输入图像的分辨率高2048*1024,实际神经网络输出的分辨率可能不同,代码中修改resize的参数,可以评估修改了分辨率的预测图像。程序下载链接:https://download.csdn.net/download/cxiazaiyu/10637603 。

 


 

 

<think>好的,我现在需要帮助用户下载和使用Cityscapes数据集测试集部分。首先,我需要回顾用户提供的引用内容,看看有哪些相关信息。 根据引用[1],用户需要访问官方网站注册并下载数据集测试集是其中的一部分。引用[2]提到了一个分拆的train集,但用户问的是测试集,所以可能需要注意是否有类似的拆分。另外,引用[2]还提供了一个项目地址,可能包含下载资源。引用[3]则说明了如何使用Cityscapes创建测试集,特别是标签转换的部分,这可能对用户后续使用有帮助。 首先,用户的主要需求是获取测试集用于模型评估或研究。根据引用[1],测试集需要从官网下载,但官网可能需要注册,并且测试集的标签可能不可公开,需要用户通过评估服务器获取预测结果。因此,我需要提醒用户这一点,并指导他们正确下载。 接下来,用户可能需要知道测试集的具体结构。Cityscapes测试集通常包含图像,但标签可能不公开,所以用户如果需要标签,可能需要使用验证集或者通过其他方式转换标签,如引用[3]提到的将分割标签转换为目标检测标签。因此,在步骤中需要提到这一点,并提供相关引用。 另外,引用[2]中的项目地址可能提供了一种替代下载方式,但用户需要确认是否包含测试集,因为原描述主要提到训练集的分割。可能需要用户自行检查该资源是否包含测试集,或者是否仅包含训练集。这一点需要提醒用户注意。 在步骤部分,应该分为下载步骤和使用步骤。下载步骤包括官网注册和下载,以及可能的替代资源。使用步骤需要涉及数据解压、结构了解、可能的标签处理(如使用验证集替代测试标签),以及模型评估的具体方法。 最后,用户可能需要相关的问题,比如测试集标签的获取、替代数据集、处理工具等,这些问题需要基于引用内容生成,并引导用户进一步探索。 总结起来,回答的结构应该是先步骤说明下载和使用,然后相关问题,确保引用正确,并注意用户可能需要处理测试集标签不可用的情况,建议使用验证集或引用[3]的方法进行转换。</think>### Cityscapes数据集测试集下载使用指南 --- #### **下载步骤** 1. **官网下载(推荐)** - 访问[Cityscapes官方网站](https://www.cityscapes-dataset.com/),注册账号并通过审核[^1]。 - 登录后选择“Download”页面,下载以下文件: - `leftImg8bit_test.zip`:测试集图像(未标注)。 - 注意:测试集标签**不公开**,需提交预测结果评估服务器获取评分。 2. **替代资源(若官网受限)** - 引用[2]中的项目地址(https://gitcode.com/Open-source-documentation-tutorial/c232d)提供了数据集分卷下载,但需确认是否包含测试集[^2]。 --- #### **使用步骤** 1. **解压数据** 解压后目录结构如下: ``` leftImg8bit/test/ ├── berlin/ ├── bielefeld/ └── ... ``` 2. **标签处理(可选)** - 若需本地评估,可使用**验证集**(`gtFine_val.zip`)替代测试集标签[^1]。 - 引用[3]提供了一种将分割标签转换为目标检测标签的方法,适用于YOLOv7等模型测试[^3]。 3. **模型评估** - 将模型输出结果按官网格式打包,提交至评估服务器获取mIoU等指标[^1]。 ---
评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuyuelongfly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值