CNN调参

本文探讨了卷积神经网络(CNN)的训练中关键的参数调优,重点关注学习率的选择和策略。介绍了Caffe框架中不同的学习率策略,如multistep、poly、exp、inv和sigmoid,以及防止过拟合的方法,包括dropout、正则化和数据增广。此外,还讨论了梯度消失和梯度爆炸的问题及其解决方案,并讲解了如何利用损失函数权重处理不平衡数据集。
摘要由CSDN通过智能技术生成

一、学习率

学习率决定了每步权重更新对当前权重的改变程度:

                                                                          w_{i}\leftarrow w_{i}-\eta \frac{\partial E}{\partial w_{i}}

其中E(w)为我们优化的损失函数,\eta是学习率。

学习率太小,更新速度慢;学习率过大,可能跨过最优解。因此,在刚开始训练,距离最优解较远时可以采用稍大的学习率,随着迭代次数增加,在逼近最优解的过程中,逐渐减小学习率。

在caffe的solver文件中,lr_policy不推荐fixed (保持base_lr不变),可以选择如下方案:

1、阶跃式的:

  • multistep: 根据后面设定的stepvalue,每次达到stepvalue,新的学习率变为之前的学习率*gamma,如

base_lr: 0.005
lr_policy: "multistep"

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuyuelongfly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值