tensorflow gpu windows配置步骤教学

本文详述了在Windows 10上配置TensorFlow-GPU 2.4.1的步骤,包括更新NVIDIA显卡驱动至最新,安装CUDA 11.0和CUDNN 8.0.4,以及使用Anaconda创建Python环境。特别强调了CUDA版本与TensorFlow-GPU的兼容性,以及常见问题的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要针对在windows10环境下的tensorflow配置问题,在linux和mac等其他环境中的配置就不过多赘述(windows总是那个问题最多的环境,建议使用linux 😃)。

本文中配置的环境为 python 3.8.5 tensorflow-gpu 2.4.1

1. 更新nvidia显卡驱动至最新

测试用显卡为 RTX 2070,如果不确定自己的显卡是否适配,可以登录nvidia官网进行查询。

2. 下载cuda 11.0

[cuda 11.0 下载地址]
注意适配tensorflow 2.4 版本的cuda 一定是11.0,而不是11.1,11.2或者其他版本,下载其他版本的cuda会导致库缺失的问题。
cuda的默认安装路径为 C:\Program Files\NVIDIA GPU Computing Toolkit

3. 下载cudnn 8.0.4用于适配TF 2.4 以及cuda 11.0

[cudnn 8.0.4 下载地址]
下载完毕cudnn后解压,分别将子文件夹 bin,include,lib/x64中的文件拷贝至cuda/v11.0 对应的同名文件夹中。

4. 使用ana

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值