Windows配置GPU版本tensorflow


欢迎关注我的微信公众号“人小路远”哦,在这里我将会记录自己日常学习的点滴收获与大家分享,以后也可能会定期记录一下自己在外读博的所见所闻,希望大家喜欢,感谢支持! 


TensorFlow 的 GPU 特性只支持 NVidia Compute Capability >= 3.5 ,显卡型号/cuda/cudnn/python/tensorflow版本都需要对应,很复杂。但是做机器学习又无法避免使用显卡加速,艾玛真香。

一路曲曲折折经历了无数次崩溃和气急败坏,最终找到一条玄学安装路线,很方便,但是一定要按照顺序来,按照指定版本号来,先用pip装cpu版再用conda装gpu版,这都是有讲究的。虽然不知道为什么,但是解决了DLL load failed: 找不到指定的模块的问题,包含测试代码,仅供参考。

最终安装版本:

  • 显卡型号: NVIDIA GeForce MX150
  • python版本: 3.6.7
  • tensorflow-gpu版本: 1.12.0
  • cuda版本: 9.0
  • cudnn版本: 7.6.5

参考:

conda 创建/删除/重命名 环境

查看tensorflow是否支持GPU,以及测试程序

【实测有效】tensorflow-gpu ImportError: DLL load failed: 找不到指定的模块。

anaconda conda 切换为国内源

anaconda查看删除增加镜像源

PIP 更换国内安装源

1、安装Anaconda

官网下载链接,但是很不推荐官网下载,建议选好版本之后复制下载链接到迅雷。下载速度瞬间从几十kb到几M,不服不行。一路安装,唯一注意一点是要把path添加到系统变量,有一个框勾选上即可。

2、新建虚拟空间

虚拟空间可以避免其他环境干扰,方便环境搭建和包的安装卸载,也是anaconda的优势所在。xxx为虚拟空间的名字,指定安装python版本为3.6

conda create -n xxx python=3.6

查看已创建的虚拟空间

conda env list

激活虚拟空间

activate xxx

分别查看pip和conda已经安装的包,并卸载已有的所有tensorflow/tensorflow-gpu/tensorboard,以免意外冲突。

pip list
pip uninstall xxx
conda list
conda uninstall xxx

3、pip安装tensorflow(cpu版)

指定版本1.12.0,至于为什么要先装CPU版的我也不知道。不这样就会报错 DLL load failed: 找不到指定的模块。

pip install tensorflow==1.12.0

测试,python环境下输入以下代码,如果输出b'Hello, TensorFlow!'即说明安装成功。

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

4、conda安装tensorflow-gpu版

conda换国内源,否则安装速度龟速且不稳定,此处选用清华大学的镜像源。

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/

# 设置搜索时显示通道地址
conda config --set show_channel_urls yes

查看是否更换成功,如果channels下为刚才的清华镜像链接则更换成功。

conda config --show

 使用conda安装tensorflow-gpu的1.12.0版本

conda install tensorflow-gpu==1.12.0

5、最终测试

在python环境下输入以下代码,如果可以打印出GPU信息则说明安装成功。

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

6、小技巧

以下是不使用conda或者希望安装其他版本的探索过程中可能会需要注意的地方:

6.1、tensorflow各个版本需要的CUDA版本以及Cudnn的对应关系

https://www.tensorflow.org/install/source_windows

6.2、查看python版本

https://www.python.org/downloads/windows/

打开cmd,输入命令python -V。版本号为3.6

6.3、PIP 更换国内安装源

pip安装龟速,同样换为清华源。你说我要是在清华上学多好?

在user目录中创建一个pip目录,如:C:\Users\xx\pip,在pip 目录下新建文件pip.ini,内容如下

[global]
timeout = 6000
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
trusted-host = pypi.tuna.tsinghua.edu.cn

6.4、查看显卡版本和算力

NVIDIA GeForce MX150

要注意TensorFlow 的 GPU 特性只支持 NVidia Compute Capability >= 3.5 的显卡,需要在NVIDIA官网查看自己显卡对应的算力。或者在安装好tensorflow的CPU版本后在python环境下输入以下代码:

import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

6.5、查看cuda版本

打开cmd,输入命令nvcc --version。版本号为9.2

6.6、查看cudnn版本

打开cudnn文件夹 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\include

打开cudnn.h文件,使用notepad++打开

Ctrl+F检索CUDNN_MAJOR,结果如下

版本号即为7.2.1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

湖大李桂桂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值