python numpy 分离与合并复数矩阵实部虚部的方法

本文介绍了如何使用Python的numpy库对短时傅里叶变换频谱进行分析,将复数矩阵分解为实部和虚部,并详细展示了如何将这两个部分重新组合成原始复数矩阵的步骤。文中通过librosa库处理wav文件,并验证了经过分离与合并操作后,复数矩阵保持不变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在进行数字信号处理的过程中,我们往往有对短时傅里叶变换频谱(spectrogram)进行分析的需求。常见的分析手段对应欧拉公式分为两种,要么使用模与相位的形式,要么使用实部虚部。本文分享一个简单的将复数光谱图分解为实部与虚部以及将两个部分重新合并为一个复数矩阵的过程,以下为python代码。

import numpy as np
import librosa

# load the original wav
test_wave, _ = librosa.load("../RecFile_1_20200617_153719_Sound_Capture_DShow_5_monoOutput1.wav", sr=44100)
# calculate the complex spectrogram stft
spectrogram_test_wav 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值