[编程题]万万没想到之抓捕孔连顺
时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 128M,其他语言256M
我叫王大锤,是一名特工。我刚刚接到任务:在字节跳动大街进行埋伏,抓捕恐怖分子孔连顺。和我一起行动的还有另外两名特工,我提议
- 我们在字节跳动大街的N个建筑中选定3个埋伏地点。
- 为了相互照应,我们决定相距最远的两名特工间的距离不超过D。
我特喵是个天才! 经过精密的计算,我们从X种可行的埋伏方案中选择了一种。这个方案万无一失,颤抖吧,孔连顺!
万万没想到,计划还是失败了,孔连顺化妆成小龙女,混在cosplay的队伍中逃出了字节跳动大街。只怪他的伪装太成功了,就是杨过本人来了也发现不了的!
请听题:给定N(可选作为埋伏点的建筑物数)、D(相距最远的两名特工间的距离的最大值)以及可选建筑的坐标,计算在这次行动中,大锤的小队有多少种埋伏选择。
注意:
- 两个特工不能埋伏在同一地点
- 三个特工是等价的:即同样的位置组合(A, B, C) 只算一种埋伏方法,不能因“特工之间互换位置”而重复使用
输入描述:
第一行包含空格分隔的两个数字 N和D(1 ≤ N ≤ 1000000; 1 ≤ D ≤ 1000000)
第二行包含N个建筑物的的位置,每个位置用一个整数(取值区间为[0, 1000000])表示,从小到大排列(将字节跳动大街看做一条数轴)
输出描述:
一个数字,表示不同埋伏方案的数量。结果可能溢出,请对 99997867 取模
示例1
输入
4 3
1 2 3 4
输出
4
说明
可选方案 (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)
示例2
输入
5 19
1 10 20 30 50
输出
1
说明
可选方案 (1, 10, 20)
思路
以 i 为终点,j 为起点,保证窗口宽度<=d,安排另外两个特工。
一个窗口包含的可能性是在 j-i 个建筑中出选2个,即(i-j)*(i-j-1)/2。
滑动窗口并求和得到所有可行方案数。
我的解答
package main
import "fmt"
func main() {
var n,d,p int //建筑数,最大距离,建筑坐标
var cnt int //方案数
var pos []int //坐标切片
fmt.Scan(&n,&d)
for i,j:=0,0;i<n;i++{
fmt.Scan(&p)
pos=append(pos,p)
for i>=3 && pos[i]-pos[j]>d{
j++
}
cnt=cnt+(i-j)*(i-j-1)/2
}
fmt.Println(cnt%99997867)
}