自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 器人软件架构的基石:线程模型与调度机制深度解析

线程池协程/纤程CPU、GPU甚至是远程服务器经过这次从操作系统内核到应用层架构的深度探索,我们可以清晰地勾勒出一幅构建高性能机器人软件的路线图。其核心思想,是从混沌的默认行为走向精心设计的秩序,最终实现系统的确定性。认清平台的本质:标准的Linux(如Ubuntu)是一个为通用计算设计的、以“公平性”为首要目标的操作系统。其默认的CFS调度器和无限制的线程迁移策略,对于需要可预测响应时间的机器人应用而言,是性能抖动和不确定性的主要来源。直接使用或。

2025-10-30 16:27:04 913

原创 机器人控制范式:从模型优化到策略学习的底层逻辑

DAgger的本质是将问题从“模仿专家做什么”转变为“学习如何在自己会到达的状态下,做出专家会做的决策”,从而有效缓解了分布偏移,典型的论文例如OmniH2O,在里面大量讨论了Dagger加入后产生的影响。在人形机器人技术日新月异的今天,我们有必要暂时从令人惊叹的演示视频和高度堆叠的算法中抽离,回归工程师的视角,审视驱动这些复杂系统的底层——控制范式。未来的高级人形机器人控制系统,几乎必然是这些范式的混合体,现在的研究方向也基本在混合控制上进行探索。这是一种在线的、反复重规划的策略。

2025-10-22 11:59:52 677

原创 基于2-RSS-1U的双足机器人并联踝关节分析与实现

"当你的机器人开始像人类一样思考如何走路时,你会发现,原来最复杂的不是大脑,而是脚踝。"这句话在机器人学界越来越成为共识。论文ASAP中的研究也证实,在sim2real中,偏差最大的正是踝关节控制。参考文献:结构变体:传统的单轴踝关节设计,就像给机器人穿了一双"高跟鞋"——虽然能走,但走得很僵硬,很危险。我们需要的是像人类脚踝一样的灵活性:既能前后摆动(pitch),又能左右倾斜(roll)。在机器人双自由度踝关节设计中,串联与并联是两种构型选择,而并联已经逐步成为主流。这是最直接的实现方式。

2025-10-21 18:44:36 1832

原创 机械臂逆解架构设计之旅:Pinocchio + OMPL + Ruckig 打造高性能规划系统

OMPL(Open Motion Planning Library)是运动规划领域的标准算法全:RRT、RRT*、PRM、EST…十几种采样式规划算法接口简洁:只需提供状态空间、碰撞检测器,剩下的 OMPL 帮你搞定学术背书:被 MoveIt、Drake 等主流框架采用而且 OMPL不依赖 ROS,可以作为独立库使用(这点很重要)。Ruckig 是一个实时轨迹生成库,专注于一件事:给定起点、终点、速度约束、加速度约束,生成一条时间最优、符合约束的轨迹。听起来简单,但工程实现极其硬核实时。

2025-10-16 22:24:05 879

原创 为什么选择 AimRT?一个关于机器人软件架构的思考

AimRT官网这里记录总结了我们在选择机器人软件架构时的思考过程。如果你用过 ROS,这些对比会帮你快速理解 AimRT 的设计理念。如果你没用过 ROS 也没关系,我们会从实际问题出发。用过 ROS 的话,.msg# ROS 的 Imu.msgAimRT 用的是Protobuf为啥 AimRT 选 Protobuf?跨语言支持更广:官方支持十几种语言,C++、Python、Java、Go 都能用性能确实好:序列化快,生成的代码也高效工业界在用。

2025-10-11 21:50:35 794

原创 常见直接式双足步态RL奖励解析

要实现步态时钟,我们首先需要用代码精确地定义出我们期望的步态是什么样的。gait_cycle: float = 0.85: 定义了一个完整的步态周期是 0.85秒。也就是说,我们期望机器人每条腿完成一次“支撑-摆动”的循环需要0.85秒。gait_air_ratio_*: float = 0.38: 定义了“腾空时间比”。这意味着在一个0.85秒的周期里,我们期望脚有 38% 的时间(约0.32秒)处于空中(摆动相),剩下的 62% 的时间(约0.53秒)在地面上(支撑相)。

2025-10-05 21:55:38 790

原创 “可部署的强化学习”会议核心总结

将强化学习(RL)从仿真成功部署到机器人硬件的最佳实践、经验教训与常见陷阱。

2025-09-17 11:00:08 871

原创 从零到“崩”,ASAP机器人模仿学习实战

ASAP开源仓库实战

2025-09-16 19:37:31 1452 1

原创 工程实战:机器人动作数据重定向

本文介绍了如何利用PHC工具实现人体动作数据到机器人动作数据的重定向。主要内容包括:1)使用SMPL人体模型和AMASS动作数据集作为输入;2)通过形状拟合(fit_smpl_shape.py)和动作拟合(fit_smpl_motion.py)两个步骤,将人类动作转换为机器人可用的关节角度数据;3)详细说明了如何通过修改YAML配置文件来适配自定义机器人模型,包括关节匹配和虚拟扩展部位的设置。该方法已被H2O、HOVER等多个项目采用,实现了人体动作到机器人的高效转换。

2025-09-14 16:25:16 1053

原创 ASAP解读:从仿真“完美演员”到现实“灌篮高手”,自动对齐物理Gap的“神器”

ASAP核心解读,一套解决sim-to-real gap的pipline

2025-09-11 19:41:06 1593

原创 HOVER解读:机器人底层控制的一把“瑞士军刀”

原班人马再度出手,用单一模型统一所有底层控制任务,把“画的饼”给实现了。

2025-09-10 10:04:15 1065

原创 H2O到OmniH2O细节解读,人形机器人遥操作的技术演进与哲学

摘要:CMU何泰然团队相继发表的H2O和OmniH2O论文为人形机器人遥操作领域带来突破。H2O首创Sim-to-Data方法,通过形态/动作重定向和特权筛选处理人类动作数据,PPO算法实现基础控制。OmniH2O改进为教师-学生蒸馏框架,采用DAgger算法增强泛化能力,并消除对线速度输入的依赖。这两项工作从概念验证到工程落地,建立了一套完整的动作学习范式,为具身智能研究提供了重要参考。

2025-09-08 19:46:41 1048

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除