退役蒟蒻写笔记总结ing~
一、单杆问题
Ⅰ 发电式单杆
①电路特点:
导体棒相当于电源,当速度为 v v v时,电动势 E = B l v E=Blv E=Blv
②安培力特点:
安培力为阻力,并随速度增大而增大(正比)
F
B
F_B
FB=
B
I
l
BIl
BIl=
B
B
B
B
l
v
R
+
r
\frac{Blv}{R+r}
R+rBlv =
B
2
l
2
v
R
+
r
\frac{B^2l^2v}{R+r}
R+rB2l2v ∝
v
v
v
③加速度特点
加速度随速度增大而减小
a
a
a=
F
−
F
B
−
u
m
g
m
\frac{F-F_B-umg}{m}
mF−FB−umg=
F
m
\frac{F}{m}
mF-
B
2
l
2
v
m
(
R
+
r
)
\frac{B^2l^2v}{m(R+r)}
m(R+r)B2l2v
④运动特点:加速度减小的加速运动
⑤最终特征:匀速运动
⑥两个极值
(
1
)
v
=
0
(1)v=0
(1)v=0时,有最大加速度:
a
m
a_m
am=
f
r
a
c
F
−
u
m
g
m
frac{F-umg}{m}
fracF−umgm
(
2
)
a
=
0
(2)a=0
(2)a=0时,有最大速度:
a
a
a=
(
F
−
F
B
−
u
m
g
)
(
R
+
r
)
B
2
l
2
\frac{(F-FB-umg)(R+r)}{B^2l^2}
B2l2(F−FB−umg)(R+r)
⑦稳定后的能量转化规律(功率关系)
F v m Fv_m Fvm= ( B l v m ) 2 R + r \frac{(Blv_m)^2}{R+r} R+r(Blvm)2 + u m g v m +umgv_m +umgvm
⑧两个规律
(
1
)
(1)
(1)动量定理:
F
t
−
B
l
q
−
u
m
g
t
=
m
v
m
−
0
Ft-Blq-umgt=mv_m-0
Ft−Blq−umgt=mvm−0
(
2
)
(2)
(2)能量守恒:
F
s
=
Q
J
+
u
m
g
S
+
1
2
m
v
m
2
Fs=Q_J+umgS+\frac{1}{2}mv^2_m
Fs=QJ+umgS+21mvm2
注意应用:
q
=
n
Δ
Φ
R
+
r
=
q=n\frac{ΔΦ}{R+r}=
q=nR+rΔΦ=
B
l
⋅
Δ
s
R
+
r
\frac{Bl·Δs}{R+r}
R+rBl⋅Δs
Ⅱ 电动式单杆
①电路特点
导体为电动边,运动后产生反电动势(等效于电动机)
②安培力的特点
安培力为运动动力,并随速度减小而减小
F B = B I l = B E − E 反 R + r l = B E − B l v R + r L F_B=BIl=B\frac{E-E_反}{R+r}l=B\frac{E-Blv}{R+r}L FB=BIl=BR+rE−E反l=BR+rE−BlvL
③加速度特点
加速度随速度增大而减小
a
=
F
B
−
u
m
g
m
=
B
E
−
B
l
v
m
(
R
+
r
)
l
−
u
g
a=\frac{F_B-umg}{m}=B\frac{E-Blv}{m(R+r)}l-ug
a=mFB−umg=Bm(R+r)E−Blvl−ug
④运动特点:a减小的加速运动
⑤最终特征:匀速运动
⑥两个极值
(
1
)
(1)
(1)最大加速度:
v
=
0
v=0
v=0时,
E
反
=
0
E_反=0
E反=0,电流、加速度最大
I
m
=
E
R
+
r
,
F
m
=
B
I
m
,
a
m
=
F
m
−
u
m
g
m
I_m=\frac{E}{R+r},F_m=BI_m,a_m=\frac{F_m-umg}{m}
Im=R+rE,Fm=BIm,am=mFm−umg
(
2
)
(2)
(2)最大速度:稳定时,速度最大,电流最小
I
I
I
v
m
=
E
B
l
−
u
m
g
(
R
+
r
)
B
2
l
2
v_m=\frac{E}{Bl}-\frac{umg(R+r)}{B^2l^2}
vm=BlE−B2l2umg(R+r)
⑦三个规律
(
1
)
(1)
(1)动量定理:
B
L
q
−
u
m
g
t
=
m
v
m
−
0
BLq-umgt=mv_m-0
BLq−umgt=mvm−0
(
2
)
(2)
(2)能量守恒:
q
E
=
Q
J
+
u
m
g
S
+
1
2
m
v
m
2
qE=Q_J+umgS+\frac{1}{2}mv_m^2
qE=QJ+umgS+21mvm2
(
3
)
(3)
(3)瞬时加速度:
a
=
F
B
−
u
m
g
m
=
B
(
E
−
B
l
v
)
m
(
R
+
r
)
l
−
u
g
a=\frac{F_B-umg}{m}=B\frac{(E-Blv)}{m(R+r)l-ug}
a=mFB−umg=Bm(R+r)l−ug(E−Blv)
Ⅲ 电容放电单杆
①电路特点
电容器放电,相当于电源;导体棒受安培力而运动。
②电流的特点
电容器放电时,导体棒在安培力作用下开始运动,同时产生阻碍放电的反电动势,导致电流减小直到0,此时 U c = B l v U_c=Blv Uc=Blv
③运动特点
a a a减小的加速运动,最终做匀速运动
④最终匀速运动,但电容器带电量不为0
⑤最大速度 v m v_m vm
电容器充电量:
Q
0
=
C
E
Q_0=CE
Q0=CE
放电结束时电量:
Q
=
C
U
=
C
B
l
l
v
m
Q=CU=CBllv_m
Q=CU=CBllvm
电容器放电电量:
Δ
Q
=
Q
0
−
Q
=
C
(
E
−
B
l
v
m
)
ΔQ=Q_0-Q=C(E-Blv_m)
ΔQ=Q0−Q=C(E−Blvm)
对杆用动量定理L:
m
v
m
=
B
I
l
⋅
Δ
t
=
B
l
Δ
Q
mv_m=BIl·Δt=BlΔQ
mvm=BIl⋅Δt=BlΔQ
v
m
=
B
l
C
E
m
+
B
2
l
2
C
v_m=\frac{BlCE}{m+B^2l^2C}
vm=m+B2l2CBlCE
Ⅳ 电容无外力充电式:
①电路特点
导体棒相当于电源,电容器被充电
②电流的特点
导体棒相当于电源;
F
安
F_安
F安为阻力,棒减速,E减小
I
=
B
l
v
−
U
c
R
,
I
I=\frac{Blv-U_c}{R},I
I=RBlv−Uc,I逐渐减小
③运动特点
a a a减小的减速运动,最终做匀速运动
④最终匀速运动,但此时电容器带电量不为0
⑤最终速度
电容器充电量:
q
=
C
U
=
C
B
l
v
q=CU=CBlv
q=CU=CBlv
用动量定理得:
m
v
0
−
m
v
=
B
I
L
⋅
Δ
t
=
B
l
q
mv_0-mv=BIL·Δt=Blq
mv0−mv=BIL⋅Δt=Blq
v
=
m
v
0
m
+
B
2
l
2
C
v=\frac{mv_0}{m+B^2l^2C}
v=m+B2l2Cmv0
Ⅴ 电容有外力充电式
①电路特点
导体发电,电容器被充电
②运动性质:匀加速直线运动
证明:
I
=
Δ
q
Δ
t
=
C
⋅
Δ
E
Δ
t
=
C
B
l
⋅
Δ
v
Δ
t
=
C
B
l
a
I=\frac{Δq}{Δt}=\frac{C·ΔE}{Δt}=\frac{CBl·Δv}{Δt}=CBla
I=ΔtΔq=ΔtC⋅ΔE=ΔtCBl⋅Δv=CBla
安培力:
F
A
=
B
I
L
⋅
a
=
F
−
F
A
a
F_A=BIL·a=\frac{F-F_A}{a}
FA=BIL⋅a=aF−FA
a
=
F
m
+
B
2
l
2
c
a=\frac{F}{m+B^2l^2c}
a=m+B2l2cF (恒定)
③四个结论
1
、
1、
1、导体棒做初速度为0的匀加速运动
2
、
2、
2、回路中的电流恒定
3
、
3、
3、导体棒受安培力恒定
4
、
4、
4、能量转化:电容器克服安培力——>电容器储存电能
二、双杆问题
Ⅰ 无外力等距双棒
①电路特点
棒2相当于电源;棒1受安培力而加速运动,运动后产生反电动势.
②电流特点
I
=
B
l
(
v
2
−
v
1
)
R
1
+
R
2
I=\frac{Bl(v_2-v_1)}{R_1+R_2}
I=R1+R2Bl(v2−v1)
随着棒2的减速、棒1的加速,两帮的相对速度
v
2
−
v
1
v_2-v_1
v2−v1变小,回路中电流也变小。
v
1
=
0
v_1=0
v1=0时:电流最大,
I
m
=
B
l
v
0
R
1
+
R
2
I_m=\frac{Blv_0}{R_1+R_2}
Im=R1+R2Blv0
v
2
=
v
1
v_2=v_1
v2=v1时:电流
I
I
I=0
③两棒的运动情况
安培力:
F
B
=
B
I
l
=
B
2
l
2
(
v
2
−
v
1
)
R
1
+
R
2
F_B=BIl=\frac{B^2l^2(v2-v1)}{R1+R2}
FB=BIl=R1+R2B2l2(v2−v1)
两棒的相对速度变小,感应电流变小,安培力变小
棒1做加速度变小的加速运动
棒2做加速度变小的减速运动
最终两棒具有相同速度
④两个规律
(
1
)
(1)
(1)系统动量守恒:两棒受到的安培力大小相等方向相反,系统合外力为零
因此:
m
2
v
0
=
(
m
1
+
m
2
)
v
共
m_2v_0=(m_1+m_2)v_共
m2v0=(m1+m2)v共
(
2
)
(2)
(2)系统能量守恒:系统机械能的减小量=内能增加量
因此:
1
2
m
2
v
0
2
=
1
2
(
m
1
+
m
2
)
v
共
2
+
Q
\frac{1}{2}m_2v_0^2=\frac{1}{2}(m1+m2)v_共^2+Q
21m2v02=21(m1+m2)v共2+Q
Q
1
Q
2
=
R
1
R
2
\frac{Q_1}{Q_2}=\frac{R_1}{R_2}
Q2Q1=R2R1
⑤变式
改变初速度提供方式(高处滑下),改变磁场方向,两棒都带有初速度
注意:若两棒位于不同磁场中,动量守恒不再成立,但仍有能量守恒
Ⅱ 无外力不等距双杆
1.电路特点
棒1相当于电源;棒2受安培力而起动,运动后产生反电动势
2.电流特点
I
=
B
l
1
v
1
−
B
l
2
v
2
R
1
+
R
2
I=\frac{Bl_1v_1-Bl_2v_2}{R_1+R_2}
I=R1+R2Bl1v1−Bl2v2
随着棒1的减速,棒2的加速,回路中电流变小
最终当
B
l
1
v
1
=
B
l
2
v
2
Bl_1v_1=Bl_2v_2
Bl1v1=Bl2v2时,电流为0,两棒都做匀速运动
3.两帮的运动情况
棒1做加速度减小的减速运动,最终匀速;
棒2做加速度减小的加速运动,最终匀速;
4.最终特征
B l 1 v 1 = B l 2 v 2 Bl_1v_1=Bl_2v_2 Bl1v1=Bl2v2,回路中电流为零
5.系统动量不守恒——两棒合外力不为0
6.两杆最终速度
取向右为正,由动量定理得
对棒1有:
−
B
I
L
1
t
=
m
1
v
1
−
m
2
v
2
-BIL_1t=m_1v_1-m_2v_2
−BIL1t=m1v1−m2v2 ①
对棒2有:
B
I
L
2
t
=
m
2
v
2
BIL_2t=m_2v_2
BIL2t=m2v2 ②
①/②得:
L
1
L
2
=
m
1
(
v
0
−
v
)
m
2
v
2
\frac{L_1}{L_2}=\frac{m_1(v_0-v)}{m_2v_2}
L2L1=m2v2m1(v0−v) ③
匀速时无电流,总电动势为0,即
B
L
v
1
=
B
L
v
2
BLv_1=BLv_2
BLv1=BLv2 ④
由③④联立得:
v
1
=
m
1
l
2
2
m
1
l
2
2
+
m
2
v
2
2
v
0
v_1=\frac{m_1l_2^2}{m_1l_2^2+m_2v_2^2}v0
v1=m1l22+m2v22m1l22v0
v
2
=
m
1
L
1
L
2
m
2
L
2
2
+
m
2
L
1
2
v
0
v_2=\frac{m_1L_1L_2}{m_2L_2^2+m_2L_1^2}v0
v2=m2L22+m2L12m1L1L2v0