【谈谈知识点】高代(Ⅰ)行列式&矩阵

前言

开的新坑够多就不怕填不完坑了
考虑到高等代数作为一门有那么点抽象&概念很多的学科,写个人话解释版本的笔记还是很有必要的
所以就开始慢慢写~争取赶紧写到现在学到的地方

Part 1 行列式

行列式之前,高代课本先提了排列和逆序对。考虑到能看到这篇文章的多半不会不知道我就跳过了(

首先行列式和矩阵的不同之处在于后者是特殊的元素,而前者本质上还是一个数字,只是写成了特殊的形式。对于n阶行列式|A|而言,它的形式类似于n*n的一个方阵,它的值等于所有取自不同行不同列的n个元素的乘积,结合全排列来理解就很简单了。唯一要注意的是,根据排列奇偶要带上符号。

由于行列式满足某些特殊的性质,我们在计算的时候可以通过交换行/列(注意变号),提一整行/列公因数,行/列之间相互加减来简化运算。常见的是化为上三角来做(矩阵同理),当然也有很多需要技巧性的小题目,比如逐行作差,补一行0+一列随便啥,还有下面那个代数与字数之类的。

余子式代数余子式是提出的新的概念,实际上就是去掉一行一列之后剩下的n-1阶矩阵的相关概念,本质上还是全排列引出来的。好用的地方在于把矩阵不断按行列展开来降阶,然后简化计算,也就是高阶拆低阶+暴力(好熟悉的套路)

Cramer法则的话……(真的有人用吗,看着都头大)(略

拉普拉斯行列式算是常规运算中了。k阶子式和余子式的概念引入后提供了行列式值的一种新算法,但实际上还是从全排列的本质入手更好理解……实际上如果把k阶子式挪到左上角去,这实际上又是个类似矩阵分块的问题(
但它的引理,即将两个行列式的乘积转换为另一个行列式,某些时候还挺好用的。 C i j = ∑ k = 1 n a i k b k j C _{ij}=\sum_{k=1}^{n}a_{ik}b_{kj} Cij=k=1naikbkj挺好记的,记不得也没关系,建议现推(

Part 2 矩阵

矩阵基本上会陪伴着走完整本高代(上),而且我猜多半也包括高代(下)……

所以基本功必须扎实。嗯。这方面东西太多,还是写个小标题

1、基础知识

矩阵的两侧是()或者{},写成||是行列式,会被弄死(

基本的矩阵知识其实没啥好讲的,秩,矩阵数乘,矩阵四则,转置都很好理解,要注意的是:
①矩阵在交换行/列时不用反号,这点与行列式不同。
②矩阵没有乘法交换律,而且 A B = 0 AB=0 AB=0 推不出其中一方为0。也就是说凡是和矩阵乘法相关的,一定认真考虑顺序和元素特殊性。
( A B ) ′ = B ′ A ′ (AB)'=B'A' (AB)=BA,容易和②弄混

2、矩阵求逆

矩阵求逆是经常要做的事,可逆的前提条件是矩阵对应行列式值不为0(即满秩)。
方法有
伴随矩阵法 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^{*} A1=A1A,注意伴随矩阵的元素是原矩阵每个位置对应的代数余子式,且还要转置一次。
正确性: A A ∗ = ∣ A ∣ E AA^{*}=|A|E AA=AE 推得
初等变换法:就是在右边扩一个n*n的单位矩阵出来,左边怎么变右边就怎么变把左边变成单位矩阵,右边就是要求的逆。
正确性:说推论前先提矩阵标准形,即把一个矩阵化为仅对角线上有1或0,其余位置全0的样子。
易证明任意矩阵都可以通过初等变换变成这样。
所以,矩阵做初等变换=左/右乘上一个初等矩阵,又任意可逆矩阵做有限次初等变换必然能化为上三角矩阵->化为对角矩阵->化为单位矩阵。
A i A_{i} Ai均为初等矩阵,写成:
A 1 A 2 A 3 … A n B = E A_1A_2A_3…A_nB=E A1A2A3AnB=E
右乘 B − 1 B^{-1} B1
→ A 1 A 2 A 3 … A n E = B − 1 \rightarrow A_1A_2A_3…A_nE=B^{-1} A1A2A3AnE=B1
正确性保证了就随便用了。这个一般用的多一点。

3、矩阵分块

分块本身不算什么特殊的知识点,只是给出了一种好玩的处理矩阵的工具。不过嘛,在很多推论中,能够把一整个矩阵看成是另一个矩阵中的某个元素,从而让矩阵内部的性质和矩阵之间的性质产生联系和转化。

4、一些推论

然后是一些稍微进阶的,常用的推论/公式:

1、 r a n k ( A ) + r a n k ( B ) ≥ r a n k ( A + B ) rank(A)+rank(B)\geq rank(A+B) rank(A)+rank(B)rank(A+B)
证:这个就不用了(

2、 r a n k ( A B ) ≤ m i n { r a n k ( A ) , r a n k ( B ) } rank(AB)\leq min\lbrace rank(A),rank(B) \rbrace rank(AB)min{rank(A),rank(B)}
证:先将AB都对角化,显然,矩阵 A B AB AB ( i , i ) (i,i) (i,i)位置仅在 A A A B B B的该位置都不为0时才不为0,得证

3、 m a x { r a n k ( A ) , r a n k ( B ) } ≤ r a n k ( A , B ) ≤ r a n k ( A ) + r a n k ( B ) max\lbrace rank(A),rank(B)\rbrace \leq rank(A, B) \leq rank(A)+rank(B) max{rank(A),rank(B)}rank(A,B)rank(A)+rank(B)
证:太简单了不证了(

4、设 A A A是一个 m ∗ n m*n mn矩阵,B是一个 n ∗ s n*s ns矩阵,则 r a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) − n rank(AB)\geq rank(A)+rank(B)-n rank(AB)rank(A)+rank(B)n
证:构造一个 ( m + s ) ∗ ( n + s ) , A B (m+s)*(n+s),AB (m+s)(n+s),AB在对角线上的矩阵C,其左下角为 E n En En(不会写公式
那么有 r a n k ( A ) + r a n k ( B ) ≤ rank(A)+rank(B)\le rank(A)+rank(B)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值