基于鲸鱼算法改进的深度学习极限学习机实现数据分类
深度学习极限学习机(Extreme Learning Machine, ELM)是一种高效的机器学习算法,它在解决数据分类问题方面表现出色。然而,为了进一步提高ELM的性能,我们可以借鉴鲸鱼算法的优秀特性,并将其应用于ELM模型中。本文将介绍如何基于鲸鱼算法改进深度学习极限学习机,并提供相应的MATLAB代码。
首先,我们需要了解深度学习极限学习机(ELM)的基本原理。ELM是一种单层前馈神经网络,它的主要思想是将输入层和隐含层之间的连接权重随机初始化,并通过求解最小二乘法问题来学习输出层的权重。ELM模型具有快速训练速度和良好的泛化能力,适用于大规模数据集和高维特征。
接下来,我们将介绍如何利用鲸鱼算法改进ELM模型。鲸鱼算法是一种基于鲸鱼行为的优化算法,它模拟了鲸鱼觅食的行为,通过迭代更新种群中的个体位置来搜索最优解。我们将使用鲸鱼算法来优化ELM模型中的隐含层神经元的权重和偏置。
以下是基于鲸鱼算法改进的ELM模型的MATLAB代码示例:
% 鲸鱼算法参数设置
max_iter = 100