基于鲸鱼算法改进的深度学习极限学习机实现数据分类

79 篇文章 ¥59.90 ¥99.00
本文介绍了如何利用鲸鱼算法改进深度学习极限学习机(ELM)以提高其在数据分类问题上的性能。通过结合ELM的快速训练和鲸鱼算法的全局寻优能力,提出了一种新的优化方法。文中还提供了MATLAB代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于鲸鱼算法改进的深度学习极限学习机实现数据分类

深度学习极限学习机(Extreme Learning Machine, ELM)是一种高效的机器学习算法,它在解决数据分类问题方面表现出色。然而,为了进一步提高ELM的性能,我们可以借鉴鲸鱼算法的优秀特性,并将其应用于ELM模型中。本文将介绍如何基于鲸鱼算法改进深度学习极限学习机,并提供相应的MATLAB代码。

首先,我们需要了解深度学习极限学习机(ELM)的基本原理。ELM是一种单层前馈神经网络,它的主要思想是将输入层和隐含层之间的连接权重随机初始化,并通过求解最小二乘法问题来学习输出层的权重。ELM模型具有快速训练速度和良好的泛化能力,适用于大规模数据集和高维特征。

接下来,我们将介绍如何利用鲸鱼算法改进ELM模型。鲸鱼算法是一种基于鲸鱼行为的优化算法,它模拟了鲸鱼觅食的行为,通过迭代更新种群中的个体位置来搜索最优解。我们将使用鲸鱼算法来优化ELM模型中的隐含层神经元的权重和偏置。

以下是基于鲸鱼算法改进的ELM模型的MATLAB代码示例:

% 鲸鱼算法参数设置
max_iter = 100
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值