基于灰狼算法优化的极限学习机实现数据分类(附带Matlab代码)
极限学习机(Extreme Learning Machine, ELM)是一种快速、高效的机器学习算法,被广泛应用于数据分类与回归任务中。为了进一步提高ELM的性能,可以使用优化算法对其进行改进。本文将介绍如何使用灰狼算法(Grey Wolf Optimizer, GWO)优化ELM神经网络以实现数据分类,并提供相应的Matlab代码。
算法介绍:
-
ELM神经网络:ELM是一种单隐层前向神经网络,其隐层节点的权重和偏置是随机初始化的。通过求解线性方程组的方式,ELM可以快速计算出输出层的权重矩阵,从而实现对输入数据的快速分类。
-
灰狼算法:灰狼算法是一种基于自然界灰狼捕食行为的启发式优化算法。它模拟了灰狼个体之间的竞争与合作关系,在搜索空间中寻找最优解。灰狼算法包括四个主要的步骤:初始化灰狼群体、更新灰狼位置、计算适应度值、选择新一代灰狼。
下面是使用Matlab实现基于灰狼算法优化ELM神经网络的代码:
% 数据准备
load(