基于灰狼算法优化的极限学习机实现数据分类(附带Matlab代码)

120 篇文章 36 订阅 ¥59.90 ¥99.00
本文阐述了如何利用灰狼算法(GWO)改进极限学习机(ELM)以提升数据分类效果。通过介绍ELM神经网络的基本原理和灰狼算法的工作机制,结合Matlab代码展示了一个优化过程。最终,优化后的ELM模型能对未知数据进行准确的分类预测。
摘要由CSDN通过智能技术生成

基于灰狼算法优化的极限学习机实现数据分类(附带Matlab代码)

极限学习机(Extreme Learning Machine, ELM)是一种快速、高效的机器学习算法,被广泛应用于数据分类与回归任务中。为了进一步提高ELM的性能,可以使用优化算法对其进行改进。本文将介绍如何使用灰狼算法(Grey Wolf Optimizer, GWO)优化ELM神经网络以实现数据分类,并提供相应的Matlab代码。

算法介绍:

  1. ELM神经网络:ELM是一种单隐层前向神经网络,其隐层节点的权重和偏置是随机初始化的。通过求解线性方程组的方式,ELM可以快速计算出输出层的权重矩阵,从而实现对输入数据的快速分类。

  2. 灰狼算法:灰狼算法是一种基于自然界灰狼捕食行为的启发式优化算法。它模拟了灰狼个体之间的竞争与合作关系,在搜索空间中寻找最优解。灰狼算法包括四个主要的步骤:初始化灰狼群体、更新灰狼位置、计算适应度值、选择新一代灰狼。

下面是使用Matlab实现基于灰狼算法优化ELM神经网络的代码:

% 数据准备
load(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值