基于支持向量机的手写数字识别:R语言实现
手写数字识别是机器学习中的经典问题之一。支持向量机(Support Vector Machine,简称SVM)是一种常用的分类算法,可以用于解决手写数字识别问题。本文将使用R语言实现基于支持向量机的手写数字识别,并提供相应的源代码。
首先,我们需要准备手写数字的数据集。在本例中,我们将使用经典的MNIST数据集,该数据集包含大量手写数字的图像样本。我们可以从R语言的mlbench
包中获取该数据集。
# 导入所需的包
library(e1071)
library(mlbench)
# 加载MNIST数据集
data(DigitRecognize)
接下来,我们需要对数据进行预处理,以便将其用于支持向量机模型的训练和测试。首先,我们将数据集分为训练集和测试集,其中训练集用于训练模型,测试集用于评估模型的性能。
# 分割数据集为训练集和测试集
set.seed(123)
trainIndex <- sample(1:nrow(DigitRecognize), 0.7 * nrow(DigitRecognize))
trainData <- DigitRecognize[trainIndex, ]
testData <- DigitRecognize[-trainInd