基于支持向量机的手写数字识别:R语言实现

本文介绍了如何使用R语言实现基于支持向量机(SVM)的手写数字识别。通过MNIST数据集,数据预处理,二元分类以及线性核函数的应用,构建并训练SVM模型,最终评估模型的准确率。
摘要由CSDN通过智能技术生成

基于支持向量机的手写数字识别:R语言实现

手写数字识别是机器学习中的经典问题之一。支持向量机(Support Vector Machine,简称SVM)是一种常用的分类算法,可以用于解决手写数字识别问题。本文将使用R语言实现基于支持向量机的手写数字识别,并提供相应的源代码。

首先,我们需要准备手写数字的数据集。在本例中,我们将使用经典的MNIST数据集,该数据集包含大量手写数字的图像样本。我们可以从R语言的mlbench包中获取该数据集。

# 导入所需的包
library(e1071)
library(mlbench)

# 加载MNIST数据集
data(DigitRecognize)

接下来,我们需要对数据进行预处理,以便将其用于支持向量机模型的训练和测试。首先,我们将数据集分为训练集和测试集,其中训练集用于训练模型,测试集用于评估模型的性能。

# 分割数据集为训练集和测试集
set.seed(123)
trainIndex <- sample(1:nrow(DigitRecognize), 0.7 * nrow(DigitRecognize))
trainData <- DigitRecognize[trainIndex, ]
testData <- DigitRecognize[-trainInd
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值