使用R语言进行回归分析实战:基于gbm包构建GBDT模型
引言:
在实际数据分析中,回归分析是一种重要的统计建模方法。而Gradient Boosting Decision Trees(梯度提升决策树)作为一种强大的集成学习算法,在回归问题中表现出色。本文将介绍如何使用R语言中的gbm包构建GBDT模型并进行回归分析。
一、环境设置与数据准备
在开始之前,我们需要确保已经安装了R语言和gbm包。接下来,让我们准备一个用于回归分析的数据集。这里我们使用mtcars数据集,它包含了32辆不同汽车的相关参数,如车速、马力、加速度等。
# 导入所需包
library(gbm)
# 加载mtcars数据集
data(mtcars)
二、数据预处理
在构建GBDT模型之前,我们需要对数据进行一些预处理工作,如数据标准化和拆分。
# 数据标准化
mtcars_scaled <- scale(mtcars)
# 将数据集分为训练集和测试集
set.seed(123)
train_index <- sample(1:nrow(mtcars_scaled), 0.7 * nrow(mtcars_scaled))
train_data <- mtcars_scaled[train_index, ]
test_data <- mtcar