使用R语言进行回归分析实战:基于gbm包构建GBDT模型

25 篇文章 7 订阅 ¥59.90 ¥99.00
本文介绍了如何使用R语言的gbm包进行回归分析,通过数据预处理、模型构建与调参、训练及预测,详细阐述了基于GBDT的回归模型建立过程,并使用了mtcars数据集作为示例。最后,通过模型评估展示了其在回归问题中的性能。
摘要由CSDN通过智能技术生成

使用R语言进行回归分析实战:基于gbm包构建GBDT模型

引言:
在实际数据分析中,回归分析是一种重要的统计建模方法。而Gradient Boosting Decision Trees(梯度提升决策树)作为一种强大的集成学习算法,在回归问题中表现出色。本文将介绍如何使用R语言中的gbm包构建GBDT模型并进行回归分析。

一、环境设置与数据准备
在开始之前,我们需要确保已经安装了R语言和gbm包。接下来,让我们准备一个用于回归分析的数据集。这里我们使用mtcars数据集,它包含了32辆不同汽车的相关参数,如车速、马力、加速度等。

# 导入所需包
library(gbm)

# 加载mtcars数据集
data(mtcars)

二、数据预处理
在构建GBDT模型之前,我们需要对数据进行一些预处理工作,如数据标准化和拆分。

# 数据标准化
mtcars_scaled <- scale(mtcars)

# 将数据集分为训练集和测试集
set.seed(123)
train_index <- sample(1:nrow(mtcars_scaled), 0.7 * nrow(mtcars_scaled))
train_data <- mtcars_scaled[train_index, ]
test_data <- mtcar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值