基于遗传算法优化药店路径问题的解决方案
遗传算法是一种模拟自然选择和遗传机制的优化算法,能够通过迭代的方式逐步优化问题的解。在这篇文章中,我们将使用遗传算法来解决药店路径优化问题,并提供相应的MATLAB代码。
问题描述:
假设有一条街道上有多家药店,我们需要找到一条最优路径,以便能够在最短的时间内访问所有药店。每家药店都有不同的服务时间,我们的目标是最小化总的等待时间和行驶时间。
解决方案:
遗传算法可以用于解决路径优化问题,其中每个个体表示一条路径,而基因则表示药店的访问顺序。下面是使用MATLAB实现的遗传算法代码:
% 参数设置
populationSize = 50; % 种群大小
mutationRate = 0.01; % 变异率
generations = 100; % 迭代次数
% 初始化种群
population = zeros(populationSize, numStores);
for i = 1:populationSize
population(i, :) = randperm(numStores);
end
% 计算适应度
fitness = zeros(populationSize, 1);
for i = 1:populationSize
fitness(i) = calculateFitness(population(i, :)