Apr.15th 数字图像处理连载(03)

day 02 数字图像处理

标签(空格分隔): 数字图像处理 冈萨雷斯


2.5.3 距离度量(未完成)

//对于坐标分别为(x,y),(s,t)(v,w)的像素p,qz来说,
这一段内容太难了,拖延了进度先mark在这里,进行下面的推理,后面再来补上

2.6 数字图像处理中的数学工具介绍

2.6.1 矩阵操作

一般来说,对于图像的阵列操作是按照每个像素执行的。图像我们可以把她们等效为矩阵。
阵列操作,只是逐项操作,而矩阵相比之下就不一样,要遵循对应的法则进行处理。
一般来说,假设阵列操作为默认操作。对于图像进行求幂次的操作,意味是对每个像素都进行求幂次的操作。当一幅图像除以另一幅图像的时候,意味着在对应的像素之间要进行相除操作。

2.6.2 线性操作和非线性操作

图像处理的方法最重要的一个区分方式是线性操作还是非线性操作。这一方法的定义和信号与系统中判断线性系统和非线性系统的方法是一致的。
由于线性计算的性质,求和的操作往往是分布式的。求和算子是属于线性操作。
最大值操作的性质。最大值操作,主要的功能就是在图像中寻找像素的最大值。经过计算过后,发现求最大值操作其实本质上是非线性操作。

2.6.3 算术操作

图像之间的算数操作是阵列操作,也就是在相应的像素之间执行。
这4中算数操作为:
S(x,y)=f(x,y)+g(x,y)
d(x,y)=f(x,y)g(x,y)
p(x,y)=f(x,y)g(x,y)
v(x,y)=f(x,y)/g(x,y)
这个对应的就是在f,g之间对相应的像素对之间进行操作。
其中,M和N是图像的行和列。

噪声图像的叠加降噪

针对降噪带噪声图像的加权平均。见书上例子。
对于一幅无噪声的图像来说,被加性噪声污染后的图像,假设每一对坐标(x,y)的地方,噪声是不相关的,均值为0.不过为了滤除噪声,我们可以采用一组带噪声图像的相加来减少噪声。通过2线性的加权运算之后,没衣服图像的噪声的均值和标准差随着K的增大,每一个位置(x,y)处带像素值的变化将会减小。
在天文学的领域上,在低照度的下对成像往往会造成图像传感器的噪声,这样情况下,单幅图像就没有办法进行分析。随着叠加数目的不断增多,带噪声图像的可分辨、可用程度是不断提高的。相加操作本质上是连续积分的一种离散形式,在日常观测中,还有一种类似的处理方法是采用CCD的累计能力,长时间观察同一个场景达到降噪的目的,冷却也常常用于降低传感器的噪声。

增强差别图像的相减

单独对于处理后的图像进行比较,难以比较出最后的结果,于是我们使用相减操作后,比较好的可以显示出两幅图像的差别。
了通过图像的相减操作后,很有效的解决了图像不好区分的问题,便于图像的识别。同时,我们还可以利用图像相减来更改检测,并且进行图像分割。

使用图像的相乘相除操作

我们可以通过使用阴影函数的反函数的方法来乘以感知图像的方法来得到没有阴影的原图。如果阴影函数未知,那么我们可以通过对于恒定灰度的目标成像得到了一个近似的阴影函数。
图像相乘操作另外一种普遍的应用是模版操作。也就是感兴趣区域处理操作。这种操作是把模板图像和给定的图像进行相乘,模版所感兴趣的区域为1,其余地区为0.模版操作中的ROI可能不止一个,但是常常使用矩形形状,但是往往ROI形状是可以任意的。大多数图像使用8比特进行显示,当我们对图片进行标准格式存储的时候,灰度值往往自动的转换到0~255这个范围之内。然而转换的方式往往取决于所使用的系统。很多软件在处理图像的存储时,往往使用的是简单的负值计为0,超过255的转换为255,给定衣服图像f,为了保证图像的算数治愈落入特定的比特区间,那么我们就首先要进行如下操作:
fm=fmin(f)
这个操作可以产生一个最小值为0的图像,然后执行操作:fs=K[fm/max(fm)]
该操作生成一个标定的图像fs,他属于[0,K]范围内。

图像的集合操作和逻辑操作

灰度值的并集操作和交集操作分别时定义为相应像素对的最大和最小操作。补集操作往往是定义为常数与图像中每个像素灰度之间的亮亮之差。

逻辑操作:

处理二值图像的过程中,我们通常把图像想想为像素集合的前景1和背景0。处理二值图像的时候,OR、AND和NOT逻辑操作就是指普通的交并补操作。在考虑到了前景元素组成的区域、集合,这两个集合的OR操作,要么属于A要么属于B,AND操作共同属于A和B,NOT操作时不属于A,没因为我们要处理图像,我们可以假设A为前景元素的集合,那么我们就可以认为NOT A是排除了所有前景元素的图像部分。这些部分要么是背景元素,要么就是其他的前景元素。XOR为异或操作,这个操作的结果是属于A或者B的前景元素的集合,但不是两者前景像素的集合。AND、OR、NOT逻辑算子是功能完备的,所以说只要掌握这三个就能完成所有的逻辑操作。

模糊集合

模糊集合的话,就是把单纯的二元分类进行拓展后。

2.6.5 空间操作

空间操作:
- 1、单像素操作:
单像素操作就是基于灰度的情况下,对单个像素改变他的数值。
- 2、邻域操作:令Sxy代表图像f中的任意一点(x,y)为中心一个邻域做标记,该像素的只由输入图像中坐标在Sxy内对像素决定的。假设制定操作对计算在大小mn,中心在(x.y)邻域中的像素平均值。这个区域的位置组成的集合是Sxy。这个公式的形式把这一操作描述为
g(x,y)=1mn(r,c)Sxyf(r,c)
其中公式中rc是像素的行和列坐标,这些坐标是Sxy中的成员。这个图像g是通过改变(x,y)的坐标,使得邻域的中心位于图像f中从一个像素到另一个像素的移动,并且在新的位置重复邻域操作,这种类型的处理可以消除小细节,并且在图像中相应的大区域实施“斑点”补偿。
- 3、几何空间变换:
几何变换改进图像中的像素空间关系,一般是叫做橡皮泥膜变换。这种可以看作在一个基膜上印刷一幅图像,然后根据预定一组规则拉伸这个橡皮膜。在数字图像处理中,几何变换基本操作有:1、坐标的空间变换;2、灰度内差(对空间变换后的像素值赋予灰度值)
一般来说,坐标空间变换最常用的是仿射变换。仿射变换一般就是我们常做的旋转等操作的背后原理。
同时,我们在做了愿图像像素重新定位之后,为了完成处理,我们还要对新位置的像素赋予灰度值,内插的话就是之前提到过的内插法,通过邻接像素求平均得到。
仿射变换常用的矩阵有:
1、恒等变换:

100010001

2、尺度变换:
Cx000Cy0001

3、旋转变换:
cosθsinθ0sinθcosθ0001

4、平移变换:
10tx01ty001

5、(垂直)偏移转化
1sy0010001

6、(水平)偏移转化
100Sk10001

一般有两种基本方法来使用仿射变换。一种叫前向映射,扫描输入图像的像素,直接计算相应像素的空间位置(x,y)。前向映射算法的问题是:输入图像中的两个或者多个像素可以背变换到输出图像的同一个位置,这样子就产生了多个输出值合并到一个输出像素的问题。还有一种是输出位置没有赋值的的情况。第二种方法成为反向映射,通过扫描输出像素的未知,在每个位置进行计算,然后使用内插操作使用最近输入像素之一来决定输出像素的灰度值。很多情况下,反向映射比前向映射更为有效,因而被许多空间变换实现。
通过仿射变换对于图像进行了旋转操作之后,使用内插操作的精度越高,那么旋转之后产生的锯齿边缘也越少。
数字图像处理的一个重要的应用是图像配准,就是把两幅和多幅相互对齐。为了解决这个问题,主要采用的方法是使用约束点,约束点是在输入图像之后参考图像中位置恰好是已知的相应点。一般来说,可以手动指定也可以实用算法自动检测。一般来说,成像系统会嵌入认为的小店,用来产生已知点(网状标记),从而指导建立约束点。
图像配准主要的应用就像是全能扫描王的扫描之后的页面平面化的过程。一般来说,这种愿图像我们可以称作含有几何畸变的图像,一般来说,我们要使用参考图像制定约束点,然后用约束点来配准这两个图像。我们一般手工选择的约束点是靠近图像的角点,用白色的小方形点来表示。这幅图像的话,我们需要在两个方向上进行现行的拉伸,所以只需要4个约束点。

2.6.6 向量与矩阵操作

多光谱图像处理主要采用向量和矩阵操作。我们日常看到的RGB图像每个像素都有三个分量,各个分量之间可以组织成一个列向量的形式:
z=[z1 z2 z3 ]
其中z1,z2,z3分别都代表了红色、绿色、蓝色图像中的像素的亮度。所以一般的我们对于一个MN的RGB彩色图像可以用这一大小的三个分量图像来表示。当我们把像素用向量表示以后,我们就好的做了。我们可以把一个像素向量z⃗ 和任意一个点a⃗ n维空间中的欧式距离D用一个向量积来表示。

D(z,a)=(z⃗ a⃗ )(z⃗ a⃗ )

这是我们定义的二维欧式距离通式。这一数字往往称之为向量范数。用来表示两个向量之间的距离。
向量像素的重要优点是:
w⃗ =A(z⃗ a⃗ )
其中Amna⃗ z⃗ n1
在进行图像处理的时候,我们可以把一个MNMN1gMN1H线MNMN

2.6.7 图像变换

图像变换就是不在正常的空间域工作,而是在变换域上工作。表示为T(u,v)的二维线性变换是一类特别重要的变换。这个的通用性形式:
T(u,v)=x=0M1y=0N1f(x,y)r(x,y,u,v)
其中,f(x,y)是输入图像,r(x,y,u,v)是正变换核。
变换域就是用各种频域的方法进行图像处理。具体可能会涉及到数字信号处理知识。
除了傅立叶变换以外,还有沃尔什变换、哈达码变换、离散余弦变换等等。

2.6.8 概率方法

当我们用随机两处理灰度值的时候,我们主要统计M*N的数字图像中最有可能的灰度值。平均灰度、平均方差是关于均值展开度的度量,是关于图像对比度的有用度量,因此是图像对比度的有用度量。此时的话,均值和方差和图像的视觉特性有明显的直接关系,高阶矩更加敏感。
开发图像处理方法主要依靠的是概率。可以使用概率来进行图像的复原、图像的分割和描述纹理。

阅读更多

没有更多推荐了,返回首页