matplotlib条形图

本文介绍了matplotlib库在Python中绘制条形图的方法,包括垂直、水平条形图以及层叠式和并列式的条形图实例。通过调整颜色、宽度等参数,可以定制化条形图的样式,展示不同数据集的比较分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概念
(一)以长方形的长度为变量的统计图表
(二)用来比较多个项目分类的数据大小
(三)通常利用于较小的数据集分析
(四)例如不同季度的销量、不同国家的人口等
二、实践
(一)举例
1、垂直条形图
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
N=5
y=[20,10,30,25,15]
index=np.arange(N)
plt.bar(index,height=y,color=‘gray’,width=0.5)
plt.show()
在这里插入图片描述
2、水平条形图
(1)由垂直的变为水平的
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
N=5
y=[20,10,30,25,15]
index=np.arange(N)
plt.bar(0,bottom=index,width=y,color=‘gray’,height=0.5,orientation=‘horizontal’)
plt.show()
在这里插入图片描述
(2)直接创建水平的
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
N=5
y=[20,10,30,25,15]
index=np.arange(N)
plt.barh(index,y,height=0.5,color=‘gray’)
plt.show()
在这里插入图片描述
3、层叠式/并列式形图
(1)并列式
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
index=np.arange(4)
sales_BJ=[52,55,63,53]
sales_SH=[44,66,55,41]
bar_width=0.3
plt.bar(index,sales_BJ,bar_width,color=‘b’)
plt.bar(index+bar_width,sales_SH,bar_width,color=‘r’)
plt.show()
在这里插入图片描述
(2)层叠式
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
index=np.arange(4)
sales_BJ=[52,55,63,53]
sales_SH=[44,66,55,41]
bar_width=0.3
plt.bar(index,sales_BJ,bar_width,color=‘b’)
plt.bar(index,sales_SH,bar_width,color=‘r’,bottom=sales_BJ)
plt.show()
在这里插入图片描述
(二)参数
1、颜色,color
2、宽度,width

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值