【数据增强】MixUp算法

概述

论文链接
mixup可以将不同的图像进行混合,从而扩充训练数据集,以下分别从图片和label的角度,介绍经过mixup操作后,数据和label的变化。

1、混合后的图片

就是将两张图片对应的元素按一定的比例进行相加:

mix_img = w*img1 + (1-w)*img2
2、新生成的图片对应的label

对于新生成的图片,分类和检测的处理方法时不一样的。
(1)分类:以下是原论文给出的计算公式。在这里插入图片描述
示例:可以假设网络预测有三类,[猫,狗,猪]:

  • 图像xi为猫,对应的标签yi为[1, 0, 0]
  • 图像xj为狗,对应的标签yj为[0, 1, 0]

λ \lambda λ为0.3,那么1- λ \lambda λ为0.7,根据上式 y~ = [0.3, 0.7, 0],这便是新的label
具体代码链接

(2)目标检测
对于目标检测来说,新生的图片对应的label为两张原图中的box的拼接:
[[img1_box, mix_weight = λ \lambda λ],
[img2_box, mix_weight = 1- λ \lambda λ]]
在进行训练是 loss = loss*mix_weight
详情解释链接
精简的代码实现
具体代码链接

参考文献:

目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
### MIXUP 方法应用于时间序列数据增强 #### 实现方法 对于时间序列数据,MIXUP 的实现方式与图像处理中的基本原理相似。具体来说: - **输入准备**:从训练集中选取两个不同的时间序列样本 \(X_1\) 和 \(X_2\) 及其对应的标签 \(y_1, y_2\)[^1]。 - **混合系数计算**:定义一个混合因子 \(\lambda\) ,该值通常来自 Beta 分布 \(Beta(\alpha,\alpha)\),其中参数 \(\alpha>0\) 控制着分布形态。 - **生成新样本**:按照下述公式创建一个新的时间序列样本以及相应的标签: \[ X_{new}=\lambda*X_1+(1-\lambda)*X_2 \] \[ y_{new}=\lambda*y_1+(1-\lambda)*y_2 \] 此过程可以在每次迭代时动态执行,确保每批次使用的都是经过混合后的全新样本。 ```python import numpy as np def mixup_time_series(X_train, y_train, alpha=0.2): batch_size = len(X_train) # Generate random mixing factors from a beta distribution lam = np.random.beta(alpha, alpha) indices = np.arange(batch_size) shuffled_indices = np.random.permutation(indices) mixed_x = (lam * X_train + (1 - lam) * X_train[shuffled_indices]) mixed_y = (lam * y_train + (1 - lam) * y_train[shuffled_indices]) return mixed_x, mixed_y ``` 这种方法能够有效地增加时间序列数据集的多样性,进而有助于提升模型的表现力和稳定性。 #### 应用案例 在实际应用场景中,比如金融市场的预测分析里,通过对历史股价走势应用 MIXUP 技术来进行数据扩增,可以帮助构建更加稳健的价格趋势预测模型。另一个例子是在医疗健康监测方面,利用患者的心电图记录作为时间序列输入源实施 MIXUP 增强,则可能改善疾病诊断算法的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值